1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
  24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
  25  * Copyright 2018, Joyent, Inc.
  26  */
  27 
  28 /*
  29  * Kernel memory allocator, as described in the following two papers and a
  30  * statement about the consolidator:
  31  *
  32  * Jeff Bonwick,
  33  * The Slab Allocator: An Object-Caching Kernel Memory Allocator.
  34  * Proceedings of the Summer 1994 Usenix Conference.
  35  * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
  36  *
  37  * Jeff Bonwick and Jonathan Adams,
  38  * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
  39  * Arbitrary Resources.
  40  * Proceedings of the 2001 Usenix Conference.
  41  * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
  42  *
  43  * kmem Slab Consolidator Big Theory Statement:
  44  *
  45  * 1. Motivation
  46  *
  47  * As stated in Bonwick94, slabs provide the following advantages over other
  48  * allocation structures in terms of memory fragmentation:
  49  *
  50  *  - Internal fragmentation (per-buffer wasted space) is minimal.
  51  *  - Severe external fragmentation (unused buffers on the free list) is
  52  *    unlikely.
  53  *
  54  * Segregating objects by size eliminates one source of external fragmentation,
  55  * and according to Bonwick:
  56  *
  57  *   The other reason that slabs reduce external fragmentation is that all
  58  *   objects in a slab are of the same type, so they have the same lifetime
  59  *   distribution. The resulting segregation of short-lived and long-lived
  60  *   objects at slab granularity reduces the likelihood of an entire page being
  61  *   held hostage due to a single long-lived allocation [Barrett93, Hanson90].
  62  *
  63  * While unlikely, severe external fragmentation remains possible. Clients that
  64  * allocate both short- and long-lived objects from the same cache cannot
  65  * anticipate the distribution of long-lived objects within the allocator's slab
  66  * implementation. Even a small percentage of long-lived objects distributed
  67  * randomly across many slabs can lead to a worst case scenario where the client
  68  * frees the majority of its objects and the system gets back almost none of the
  69  * slabs. Despite the client doing what it reasonably can to help the system
  70  * reclaim memory, the allocator cannot shake free enough slabs because of
  71  * lonely allocations stubbornly hanging on. Although the allocator is in a
  72  * position to diagnose the fragmentation, there is nothing that the allocator
  73  * by itself can do about it. It only takes a single allocated object to prevent
  74  * an entire slab from being reclaimed, and any object handed out by
  75  * kmem_cache_alloc() is by definition in the client's control. Conversely,
  76  * although the client is in a position to move a long-lived object, it has no
  77  * way of knowing if the object is causing fragmentation, and if so, where to
  78  * move it. A solution necessarily requires further cooperation between the
  79  * allocator and the client.
  80  *
  81  * 2. Move Callback
  82  *
  83  * The kmem slab consolidator therefore adds a move callback to the
  84  * allocator/client interface, improving worst-case external fragmentation in
  85  * kmem caches that supply a function to move objects from one memory location
  86  * to another. In a situation of low memory kmem attempts to consolidate all of
  87  * a cache's slabs at once; otherwise it works slowly to bring external
  88  * fragmentation within the 1/8 limit guaranteed for internal fragmentation,
  89  * thereby helping to avoid a low memory situation in the future.
  90  *
  91  * The callback has the following signature:
  92  *
  93  *   kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg)
  94  *
  95  * It supplies the kmem client with two addresses: the allocated object that
  96  * kmem wants to move and a buffer selected by kmem for the client to use as the
  97  * copy destination. The callback is kmem's way of saying "Please get off of
  98  * this buffer and use this one instead." kmem knows where it wants to move the
  99  * object in order to best reduce fragmentation. All the client needs to know
 100  * about the second argument (void *new) is that it is an allocated, constructed
 101  * object ready to take the contents of the old object. When the move function
 102  * is called, the system is likely to be low on memory, and the new object
 103  * spares the client from having to worry about allocating memory for the
 104  * requested move. The third argument supplies the size of the object, in case a
 105  * single move function handles multiple caches whose objects differ only in
 106  * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional
 107  * user argument passed to the constructor, destructor, and reclaim functions is
 108  * also passed to the move callback.
 109  *
 110  * 2.1 Setting the Move Callback
 111  *
 112  * The client sets the move callback after creating the cache and before
 113  * allocating from it:
 114  *
 115  *      object_cache = kmem_cache_create(...);
 116  *      kmem_cache_set_move(object_cache, object_move);
 117  *
 118  * 2.2 Move Callback Return Values
 119  *
 120  * Only the client knows about its own data and when is a good time to move it.
 121  * The client is cooperating with kmem to return unused memory to the system,
 122  * and kmem respectfully accepts this help at the client's convenience. When
 123  * asked to move an object, the client can respond with any of the following:
 124  *
 125  *   typedef enum kmem_cbrc {
 126  *           KMEM_CBRC_YES,
 127  *           KMEM_CBRC_NO,
 128  *           KMEM_CBRC_LATER,
 129  *           KMEM_CBRC_DONT_NEED,
 130  *           KMEM_CBRC_DONT_KNOW
 131  *   } kmem_cbrc_t;
 132  *
 133  * The client must not explicitly kmem_cache_free() either of the objects passed
 134  * to the callback, since kmem wants to free them directly to the slab layer
 135  * (bypassing the per-CPU magazine layer). The response tells kmem which of the
 136  * objects to free:
 137  *
 138  *       YES: (Did it) The client moved the object, so kmem frees the old one.
 139  *        NO: (Never) The client refused, so kmem frees the new object (the
 140  *            unused copy destination). kmem also marks the slab of the old
 141  *            object so as not to bother the client with further callbacks for
 142  *            that object as long as the slab remains on the partial slab list.
 143  *            (The system won't be getting the slab back as long as the
 144  *            immovable object holds it hostage, so there's no point in moving
 145  *            any of its objects.)
 146  *     LATER: The client is using the object and cannot move it now, so kmem
 147  *            frees the new object (the unused copy destination). kmem still
 148  *            attempts to move other objects off the slab, since it expects to
 149  *            succeed in clearing the slab in a later callback. The client
 150  *            should use LATER instead of NO if the object is likely to become
 151  *            movable very soon.
 152  * DONT_NEED: The client no longer needs the object, so kmem frees the old along
 153  *            with the new object (the unused copy destination). This response
 154  *            is the client's opportunity to be a model citizen and give back as
 155  *            much as it can.
 156  * DONT_KNOW: The client does not know about the object because
 157  *            a) the client has just allocated the object and not yet put it
 158  *               wherever it expects to find known objects
 159  *            b) the client has removed the object from wherever it expects to
 160  *               find known objects and is about to free it, or
 161  *            c) the client has freed the object.
 162  *            In all these cases (a, b, and c) kmem frees the new object (the
 163  *            unused copy destination).  In the first case, the object is in
 164  *            use and the correct action is that for LATER; in the latter two
 165  *            cases, we know that the object is either freed or about to be
 166  *            freed, in which case it is either already in a magazine or about
 167  *            to be in one.  In these cases, we know that the object will either
 168  *            be reallocated and reused, or it will end up in a full magazine
 169  *            that will be reaped (thereby liberating the slab).  Because it
 170  *            is prohibitively expensive to differentiate these cases, and
 171  *            because the defrag code is executed when we're low on memory
 172  *            (thereby biasing the system to reclaim full magazines) we treat
 173  *            all DONT_KNOW cases as LATER and rely on cache reaping to
 174  *            generally clean up full magazines.  While we take the same action
 175  *            for these cases, we maintain their semantic distinction:  if
 176  *            defragmentation is not occurring, it is useful to know if this
 177  *            is due to objects in use (LATER) or objects in an unknown state
 178  *            of transition (DONT_KNOW).
 179  *
 180  * 2.3 Object States
 181  *
 182  * Neither kmem nor the client can be assumed to know the object's whereabouts
 183  * at the time of the callback. An object belonging to a kmem cache may be in
 184  * any of the following states:
 185  *
 186  * 1. Uninitialized on the slab
 187  * 2. Allocated from the slab but not constructed (still uninitialized)
 188  * 3. Allocated from the slab, constructed, but not yet ready for business
 189  *    (not in a valid state for the move callback)
 190  * 4. In use (valid and known to the client)
 191  * 5. About to be freed (no longer in a valid state for the move callback)
 192  * 6. Freed to a magazine (still constructed)
 193  * 7. Allocated from a magazine, not yet ready for business (not in a valid
 194  *    state for the move callback), and about to return to state #4
 195  * 8. Deconstructed on a magazine that is about to be freed
 196  * 9. Freed to the slab
 197  *
 198  * Since the move callback may be called at any time while the object is in any
 199  * of the above states (except state #1), the client needs a safe way to
 200  * determine whether or not it knows about the object. Specifically, the client
 201  * needs to know whether or not the object is in state #4, the only state in
 202  * which a move is valid. If the object is in any other state, the client should
 203  * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of
 204  * the object's fields.
 205  *
 206  * Note that although an object may be in state #4 when kmem initiates the move
 207  * request, the object may no longer be in that state by the time kmem actually
 208  * calls the move function. Not only does the client free objects
 209  * asynchronously, kmem itself puts move requests on a queue where thay are
 210  * pending until kmem processes them from another context. Also, objects freed
 211  * to a magazine appear allocated from the point of view of the slab layer, so
 212  * kmem may even initiate requests for objects in a state other than state #4.
 213  *
 214  * 2.3.1 Magazine Layer
 215  *
 216  * An important insight revealed by the states listed above is that the magazine
 217  * layer is populated only by kmem_cache_free(). Magazines of constructed
 218  * objects are never populated directly from the slab layer (which contains raw,
 219  * unconstructed objects). Whenever an allocation request cannot be satisfied
 220  * from the magazine layer, the magazines are bypassed and the request is
 221  * satisfied from the slab layer (creating a new slab if necessary). kmem calls
 222  * the object constructor only when allocating from the slab layer, and only in
 223  * response to kmem_cache_alloc() or to prepare the destination buffer passed in
 224  * the move callback. kmem does not preconstruct objects in anticipation of
 225  * kmem_cache_alloc().
 226  *
 227  * 2.3.2 Object Constructor and Destructor
 228  *
 229  * If the client supplies a destructor, it must be valid to call the destructor
 230  * on a newly created object (immediately after the constructor).
 231  *
 232  * 2.4 Recognizing Known Objects
 233  *
 234  * There is a simple test to determine safely whether or not the client knows
 235  * about a given object in the move callback. It relies on the fact that kmem
 236  * guarantees that the object of the move callback has only been touched by the
 237  * client itself or else by kmem. kmem does this by ensuring that none of the
 238  * cache's slabs are freed to the virtual memory (VM) subsystem while a move
 239  * callback is pending. When the last object on a slab is freed, if there is a
 240  * pending move, kmem puts the slab on a per-cache dead list and defers freeing
 241  * slabs on that list until all pending callbacks are completed. That way,
 242  * clients can be certain that the object of a move callback is in one of the
 243  * states listed above, making it possible to distinguish known objects (in
 244  * state #4) using the two low order bits of any pointer member (with the
 245  * exception of 'char *' or 'short *' which may not be 4-byte aligned on some
 246  * platforms).
 247  *
 248  * The test works as long as the client always transitions objects from state #4
 249  * (known, in use) to state #5 (about to be freed, invalid) by setting the low
 250  * order bit of the client-designated pointer member. Since kmem only writes
 251  * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and
 252  * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is
 253  * guaranteed to set at least one of the two low order bits. Therefore, given an
 254  * object with a back pointer to a 'container_t *o_container', the client can
 255  * test
 256  *
 257  *      container_t *container = object->o_container;
 258  *      if ((uintptr_t)container & 0x3) {
 259  *              return (KMEM_CBRC_DONT_KNOW);
 260  *      }
 261  *
 262  * Typically, an object will have a pointer to some structure with a list or
 263  * hash where objects from the cache are kept while in use. Assuming that the
 264  * client has some way of knowing that the container structure is valid and will
 265  * not go away during the move, and assuming that the structure includes a lock
 266  * to protect whatever collection is used, then the client would continue as
 267  * follows:
 268  *
 269  *      // Ensure that the container structure does not go away.
 270  *      if (container_hold(container) == 0) {
 271  *              return (KMEM_CBRC_DONT_KNOW);
 272  *      }
 273  *      mutex_enter(&container->c_objects_lock);
 274  *      if (container != object->o_container) {
 275  *              mutex_exit(&container->c_objects_lock);
 276  *              container_rele(container);
 277  *              return (KMEM_CBRC_DONT_KNOW);
 278  *      }
 279  *
 280  * At this point the client knows that the object cannot be freed as long as
 281  * c_objects_lock is held. Note that after acquiring the lock, the client must
 282  * recheck the o_container pointer in case the object was removed just before
 283  * acquiring the lock.
 284  *
 285  * When the client is about to free an object, it must first remove that object
 286  * from the list, hash, or other structure where it is kept. At that time, to
 287  * mark the object so it can be distinguished from the remaining, known objects,
 288  * the client sets the designated low order bit:
 289  *
 290  *      mutex_enter(&container->c_objects_lock);
 291  *      object->o_container = (void *)((uintptr_t)object->o_container | 0x1);
 292  *      list_remove(&container->c_objects, object);
 293  *      mutex_exit(&container->c_objects_lock);
 294  *
 295  * In the common case, the object is freed to the magazine layer, where it may
 296  * be reused on a subsequent allocation without the overhead of calling the
 297  * constructor. While in the magazine it appears allocated from the point of
 298  * view of the slab layer, making it a candidate for the move callback. Most
 299  * objects unrecognized by the client in the move callback fall into this
 300  * category and are cheaply distinguished from known objects by the test
 301  * described earlier. Because searching magazines is prohibitively expensive
 302  * for kmem, clients that do not mark freed objects (and therefore return
 303  * KMEM_CBRC_DONT_KNOW for large numbers of objects) may find defragmentation
 304  * efficacy reduced.
 305  *
 306  * Invalidating the designated pointer member before freeing the object marks
 307  * the object to be avoided in the callback, and conversely, assigning a valid
 308  * value to the designated pointer member after allocating the object makes the
 309  * object fair game for the callback:
 310  *
 311  *      ... allocate object ...
 312  *      ... set any initial state not set by the constructor ...
 313  *
 314  *      mutex_enter(&container->c_objects_lock);
 315  *      list_insert_tail(&container->c_objects, object);
 316  *      membar_producer();
 317  *      object->o_container = container;
 318  *      mutex_exit(&container->c_objects_lock);
 319  *
 320  * Note that everything else must be valid before setting o_container makes the
 321  * object fair game for the move callback. The membar_producer() call ensures
 322  * that all the object's state is written to memory before setting the pointer
 323  * that transitions the object from state #3 or #7 (allocated, constructed, not
 324  * yet in use) to state #4 (in use, valid). That's important because the move
 325  * function has to check the validity of the pointer before it can safely
 326  * acquire the lock protecting the collection where it expects to find known
 327  * objects.
 328  *
 329  * This method of distinguishing known objects observes the usual symmetry:
 330  * invalidating the designated pointer is the first thing the client does before
 331  * freeing the object, and setting the designated pointer is the last thing the
 332  * client does after allocating the object. Of course, the client is not
 333  * required to use this method. Fundamentally, how the client recognizes known
 334  * objects is completely up to the client, but this method is recommended as an
 335  * efficient and safe way to take advantage of the guarantees made by kmem. If
 336  * the entire object is arbitrary data without any markable bits from a suitable
 337  * pointer member, then the client must find some other method, such as
 338  * searching a hash table of known objects.
 339  *
 340  * 2.5 Preventing Objects From Moving
 341  *
 342  * Besides a way to distinguish known objects, the other thing that the client
 343  * needs is a strategy to ensure that an object will not move while the client
 344  * is actively using it. The details of satisfying this requirement tend to be
 345  * highly cache-specific. It might seem that the same rules that let a client
 346  * remove an object safely should also decide when an object can be moved
 347  * safely. However, any object state that makes a removal attempt invalid is
 348  * likely to be long-lasting for objects that the client does not expect to
 349  * remove. kmem knows nothing about the object state and is equally likely (from
 350  * the client's point of view) to request a move for any object in the cache,
 351  * whether prepared for removal or not. Even a low percentage of objects stuck
 352  * in place by unremovability will defeat the consolidator if the stuck objects
 353  * are the same long-lived allocations likely to hold slabs hostage.
 354  * Fundamentally, the consolidator is not aimed at common cases. Severe external
 355  * fragmentation is a worst case scenario manifested as sparsely allocated
 356  * slabs, by definition a low percentage of the cache's objects. When deciding
 357  * what makes an object movable, keep in mind the goal of the consolidator: to
 358  * bring worst-case external fragmentation within the limits guaranteed for
 359  * internal fragmentation. Removability is a poor criterion if it is likely to
 360  * exclude more than an insignificant percentage of objects for long periods of
 361  * time.
 362  *
 363  * A tricky general solution exists, and it has the advantage of letting you
 364  * move any object at almost any moment, practically eliminating the likelihood
 365  * that an object can hold a slab hostage. However, if there is a cache-specific
 366  * way to ensure that an object is not actively in use in the vast majority of
 367  * cases, a simpler solution that leverages this cache-specific knowledge is
 368  * preferred.
 369  *
 370  * 2.5.1 Cache-Specific Solution
 371  *
 372  * As an example of a cache-specific solution, the ZFS znode cache takes
 373  * advantage of the fact that the vast majority of znodes are only being
 374  * referenced from the DNLC. (A typical case might be a few hundred in active
 375  * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS
 376  * client has established that it recognizes the znode and can access its fields
 377  * safely (using the method described earlier), it then tests whether the znode
 378  * is referenced by anything other than the DNLC. If so, it assumes that the
 379  * znode may be in active use and is unsafe to move, so it drops its locks and
 380  * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere
 381  * else znodes are used, no change is needed to protect against the possibility
 382  * of the znode moving. The disadvantage is that it remains possible for an
 383  * application to hold a znode slab hostage with an open file descriptor.
 384  * However, this case ought to be rare and the consolidator has a way to deal
 385  * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same
 386  * object, kmem eventually stops believing it and treats the slab as if the
 387  * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can
 388  * then focus on getting it off of the partial slab list by allocating rather
 389  * than freeing all of its objects. (Either way of getting a slab off the
 390  * free list reduces fragmentation.)
 391  *
 392  * 2.5.2 General Solution
 393  *
 394  * The general solution, on the other hand, requires an explicit hold everywhere
 395  * the object is used to prevent it from moving. To keep the client locking
 396  * strategy as uncomplicated as possible, kmem guarantees the simplifying
 397  * assumption that move callbacks are sequential, even across multiple caches.
 398  * Internally, a global queue processed by a single thread supports all caches
 399  * implementing the callback function. No matter how many caches supply a move
 400  * function, the consolidator never moves more than one object at a time, so the
 401  * client does not have to worry about tricky lock ordering involving several
 402  * related objects from different kmem caches.
 403  *
 404  * The general solution implements the explicit hold as a read-write lock, which
 405  * allows multiple readers to access an object from the cache simultaneously
 406  * while a single writer is excluded from moving it. A single rwlock for the
 407  * entire cache would lock out all threads from using any of the cache's objects
 408  * even though only a single object is being moved, so to reduce contention,
 409  * the client can fan out the single rwlock into an array of rwlocks hashed by
 410  * the object address, making it probable that moving one object will not
 411  * prevent other threads from using a different object. The rwlock cannot be a
 412  * member of the object itself, because the possibility of the object moving
 413  * makes it unsafe to access any of the object's fields until the lock is
 414  * acquired.
 415  *
 416  * Assuming a small, fixed number of locks, it's possible that multiple objects
 417  * will hash to the same lock. A thread that needs to use multiple objects in
 418  * the same function may acquire the same lock multiple times. Since rwlocks are
 419  * reentrant for readers, and since there is never more than a single writer at
 420  * a time (assuming that the client acquires the lock as a writer only when
 421  * moving an object inside the callback), there would seem to be no problem.
 422  * However, a client locking multiple objects in the same function must handle
 423  * one case of potential deadlock: Assume that thread A needs to prevent both
 424  * object 1 and object 2 from moving, and thread B, the callback, meanwhile
 425  * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the
 426  * same lock, that thread A will acquire the lock for object 1 as a reader
 427  * before thread B sets the lock's write-wanted bit, preventing thread A from
 428  * reacquiring the lock for object 2 as a reader. Unable to make forward
 429  * progress, thread A will never release the lock for object 1, resulting in
 430  * deadlock.
 431  *
 432  * There are two ways of avoiding the deadlock just described. The first is to
 433  * use rw_tryenter() rather than rw_enter() in the callback function when
 434  * attempting to acquire the lock as a writer. If tryenter discovers that the
 435  * same object (or another object hashed to the same lock) is already in use, it
 436  * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use
 437  * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t,
 438  * since it allows a thread to acquire the lock as a reader in spite of a
 439  * waiting writer. This second approach insists on moving the object now, no
 440  * matter how many readers the move function must wait for in order to do so,
 441  * and could delay the completion of the callback indefinitely (blocking
 442  * callbacks to other clients). In practice, a less insistent callback using
 443  * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems
 444  * little reason to use anything else.
 445  *
 446  * Avoiding deadlock is not the only problem that an implementation using an
 447  * explicit hold needs to solve. Locking the object in the first place (to
 448  * prevent it from moving) remains a problem, since the object could move
 449  * between the time you obtain a pointer to the object and the time you acquire
 450  * the rwlock hashed to that pointer value. Therefore the client needs to
 451  * recheck the value of the pointer after acquiring the lock, drop the lock if
 452  * the value has changed, and try again. This requires a level of indirection:
 453  * something that points to the object rather than the object itself, that the
 454  * client can access safely while attempting to acquire the lock. (The object
 455  * itself cannot be referenced safely because it can move at any time.)
 456  * The following lock-acquisition function takes whatever is safe to reference
 457  * (arg), follows its pointer to the object (using function f), and tries as
 458  * often as necessary to acquire the hashed lock and verify that the object
 459  * still has not moved:
 460  *
 461  *      object_t *
 462  *      object_hold(object_f f, void *arg)
 463  *      {
 464  *              object_t *op;
 465  *
 466  *              op = f(arg);
 467  *              if (op == NULL) {
 468  *                      return (NULL);
 469  *              }
 470  *
 471  *              rw_enter(OBJECT_RWLOCK(op), RW_READER);
 472  *              while (op != f(arg)) {
 473  *                      rw_exit(OBJECT_RWLOCK(op));
 474  *                      op = f(arg);
 475  *                      if (op == NULL) {
 476  *                              break;
 477  *                      }
 478  *                      rw_enter(OBJECT_RWLOCK(op), RW_READER);
 479  *              }
 480  *
 481  *              return (op);
 482  *      }
 483  *
 484  * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The
 485  * lock reacquisition loop, while necessary, almost never executes. The function
 486  * pointer f (used to obtain the object pointer from arg) has the following type
 487  * definition:
 488  *
 489  *      typedef object_t *(*object_f)(void *arg);
 490  *
 491  * An object_f implementation is likely to be as simple as accessing a structure
 492  * member:
 493  *
 494  *      object_t *
 495  *      s_object(void *arg)
 496  *      {
 497  *              something_t *sp = arg;
 498  *              return (sp->s_object);
 499  *      }
 500  *
 501  * The flexibility of a function pointer allows the path to the object to be
 502  * arbitrarily complex and also supports the notion that depending on where you
 503  * are using the object, you may need to get it from someplace different.
 504  *
 505  * The function that releases the explicit hold is simpler because it does not
 506  * have to worry about the object moving:
 507  *
 508  *      void
 509  *      object_rele(object_t *op)
 510  *      {
 511  *              rw_exit(OBJECT_RWLOCK(op));
 512  *      }
 513  *
 514  * The caller is spared these details so that obtaining and releasing an
 515  * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller
 516  * of object_hold() only needs to know that the returned object pointer is valid
 517  * if not NULL and that the object will not move until released.
 518  *
 519  * Although object_hold() prevents an object from moving, it does not prevent it
 520  * from being freed. The caller must take measures before calling object_hold()
 521  * (afterwards is too late) to ensure that the held object cannot be freed. The
 522  * caller must do so without accessing the unsafe object reference, so any lock
 523  * or reference count used to ensure the continued existence of the object must
 524  * live outside the object itself.
 525  *
 526  * Obtaining a new object is a special case where an explicit hold is impossible
 527  * for the caller. Any function that returns a newly allocated object (either as
 528  * a return value, or as an in-out paramter) must return it already held; after
 529  * the caller gets it is too late, since the object cannot be safely accessed
 530  * without the level of indirection described earlier. The following
 531  * object_alloc() example uses the same code shown earlier to transition a new
 532  * object into the state of being recognized (by the client) as a known object.
 533  * The function must acquire the hold (rw_enter) before that state transition
 534  * makes the object movable:
 535  *
 536  *      static object_t *
 537  *      object_alloc(container_t *container)
 538  *      {
 539  *              object_t *object = kmem_cache_alloc(object_cache, 0);
 540  *              ... set any initial state not set by the constructor ...
 541  *              rw_enter(OBJECT_RWLOCK(object), RW_READER);
 542  *              mutex_enter(&container->c_objects_lock);
 543  *              list_insert_tail(&container->c_objects, object);
 544  *              membar_producer();
 545  *              object->o_container = container;
 546  *              mutex_exit(&container->c_objects_lock);
 547  *              return (object);
 548  *      }
 549  *
 550  * Functions that implicitly acquire an object hold (any function that calls
 551  * object_alloc() to supply an object for the caller) need to be carefully noted
 552  * so that the matching object_rele() is not neglected. Otherwise, leaked holds
 553  * prevent all objects hashed to the affected rwlocks from ever being moved.
 554  *
 555  * The pointer to a held object can be hashed to the holding rwlock even after
 556  * the object has been freed. Although it is possible to release the hold
 557  * after freeing the object, you may decide to release the hold implicitly in
 558  * whatever function frees the object, so as to release the hold as soon as
 559  * possible, and for the sake of symmetry with the function that implicitly
 560  * acquires the hold when it allocates the object. Here, object_free() releases
 561  * the hold acquired by object_alloc(). Its implicit object_rele() forms a
 562  * matching pair with object_hold():
 563  *
 564  *      void
 565  *      object_free(object_t *object)
 566  *      {
 567  *              container_t *container;
 568  *
 569  *              ASSERT(object_held(object));
 570  *              container = object->o_container;
 571  *              mutex_enter(&container->c_objects_lock);
 572  *              object->o_container =
 573  *                  (void *)((uintptr_t)object->o_container | 0x1);
 574  *              list_remove(&container->c_objects, object);
 575  *              mutex_exit(&container->c_objects_lock);
 576  *              object_rele(object);
 577  *              kmem_cache_free(object_cache, object);
 578  *      }
 579  *
 580  * Note that object_free() cannot safely accept an object pointer as an argument
 581  * unless the object is already held. Any function that calls object_free()
 582  * needs to be carefully noted since it similarly forms a matching pair with
 583  * object_hold().
 584  *
 585  * To complete the picture, the following callback function implements the
 586  * general solution by moving objects only if they are currently unheld:
 587  *
 588  *      static kmem_cbrc_t
 589  *      object_move(void *buf, void *newbuf, size_t size, void *arg)
 590  *      {
 591  *              object_t *op = buf, *np = newbuf;
 592  *              container_t *container;
 593  *
 594  *              container = op->o_container;
 595  *              if ((uintptr_t)container & 0x3) {
 596  *                      return (KMEM_CBRC_DONT_KNOW);
 597  *              }
 598  *
 599  *              // Ensure that the container structure does not go away.
 600  *              if (container_hold(container) == 0) {
 601  *                      return (KMEM_CBRC_DONT_KNOW);
 602  *              }
 603  *
 604  *              mutex_enter(&container->c_objects_lock);
 605  *              if (container != op->o_container) {
 606  *                      mutex_exit(&container->c_objects_lock);
 607  *                      container_rele(container);
 608  *                      return (KMEM_CBRC_DONT_KNOW);
 609  *              }
 610  *
 611  *              if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) {
 612  *                      mutex_exit(&container->c_objects_lock);
 613  *                      container_rele(container);
 614  *                      return (KMEM_CBRC_LATER);
 615  *              }
 616  *
 617  *              object_move_impl(op, np); // critical section
 618  *              rw_exit(OBJECT_RWLOCK(op));
 619  *
 620  *              op->o_container = (void *)((uintptr_t)op->o_container | 0x1);
 621  *              list_link_replace(&op->o_link_node, &np->o_link_node);
 622  *              mutex_exit(&container->c_objects_lock);
 623  *              container_rele(container);
 624  *              return (KMEM_CBRC_YES);
 625  *      }
 626  *
 627  * Note that object_move() must invalidate the designated o_container pointer of
 628  * the old object in the same way that object_free() does, since kmem will free
 629  * the object in response to the KMEM_CBRC_YES return value.
 630  *
 631  * The lock order in object_move() differs from object_alloc(), which locks
 632  * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the
 633  * callback uses rw_tryenter() (preventing the deadlock described earlier), it's
 634  * not a problem. Holding the lock on the object list in the example above
 635  * through the entire callback not only prevents the object from going away, it
 636  * also allows you to lock the list elsewhere and know that none of its elements
 637  * will move during iteration.
 638  *
 639  * Adding an explicit hold everywhere an object from the cache is used is tricky
 640  * and involves much more change to client code than a cache-specific solution
 641  * that leverages existing state to decide whether or not an object is
 642  * movable. However, this approach has the advantage that no object remains
 643  * immovable for any significant length of time, making it extremely unlikely
 644  * that long-lived allocations can continue holding slabs hostage; and it works
 645  * for any cache.
 646  *
 647  * 3. Consolidator Implementation
 648  *
 649  * Once the client supplies a move function that a) recognizes known objects and
 650  * b) avoids moving objects that are actively in use, the remaining work is up
 651  * to the consolidator to decide which objects to move and when to issue
 652  * callbacks.
 653  *
 654  * The consolidator relies on the fact that a cache's slabs are ordered by
 655  * usage. Each slab has a fixed number of objects. Depending on the slab's
 656  * "color" (the offset of the first object from the beginning of the slab;
 657  * offsets are staggered to mitigate false sharing of cache lines) it is either
 658  * the maximum number of objects per slab determined at cache creation time or
 659  * else the number closest to the maximum that fits within the space remaining
 660  * after the initial offset. A completely allocated slab may contribute some
 661  * internal fragmentation (per-slab overhead) but no external fragmentation, so
 662  * it is of no interest to the consolidator. At the other extreme, slabs whose
 663  * objects have all been freed to the slab are released to the virtual memory
 664  * (VM) subsystem (objects freed to magazines are still allocated as far as the
 665  * slab is concerned). External fragmentation exists when there are slabs
 666  * somewhere between these extremes. A partial slab has at least one but not all
 667  * of its objects allocated. The more partial slabs, and the fewer allocated
 668  * objects on each of them, the higher the fragmentation. Hence the
 669  * consolidator's overall strategy is to reduce the number of partial slabs by
 670  * moving allocated objects from the least allocated slabs to the most allocated
 671  * slabs.
 672  *
 673  * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated
 674  * slabs are kept separately in an unordered list. Since the majority of slabs
 675  * tend to be completely allocated (a typical unfragmented cache may have
 676  * thousands of complete slabs and only a single partial slab), separating
 677  * complete slabs improves the efficiency of partial slab ordering, since the
 678  * complete slabs do not affect the depth or balance of the AVL tree. This
 679  * ordered sequence of partial slabs acts as a "free list" supplying objects for
 680  * allocation requests.
 681  *
 682  * Objects are always allocated from the first partial slab in the free list,
 683  * where the allocation is most likely to eliminate a partial slab (by
 684  * completely allocating it). Conversely, when a single object from a completely
 685  * allocated slab is freed to the slab, that slab is added to the front of the
 686  * free list. Since most free list activity involves highly allocated slabs
 687  * coming and going at the front of the list, slabs tend naturally toward the
 688  * ideal order: highly allocated at the front, sparsely allocated at the back.
 689  * Slabs with few allocated objects are likely to become completely free if they
 690  * keep a safe distance away from the front of the free list. Slab misorders
 691  * interfere with the natural tendency of slabs to become completely free or
 692  * completely allocated. For example, a slab with a single allocated object
 693  * needs only a single free to escape the cache; its natural desire is
 694  * frustrated when it finds itself at the front of the list where a second
 695  * allocation happens just before the free could have released it. Another slab
 696  * with all but one object allocated might have supplied the buffer instead, so
 697  * that both (as opposed to neither) of the slabs would have been taken off the
 698  * free list.
 699  *
 700  * Although slabs tend naturally toward the ideal order, misorders allowed by a
 701  * simple list implementation defeat the consolidator's strategy of merging
 702  * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem
 703  * needs another way to fix misorders to optimize its callback strategy. One
 704  * approach is to periodically scan a limited number of slabs, advancing a
 705  * marker to hold the current scan position, and to move extreme misorders to
 706  * the front or back of the free list and to the front or back of the current
 707  * scan range. By making consecutive scan ranges overlap by one slab, the least
 708  * allocated slab in the current range can be carried along from the end of one
 709  * scan to the start of the next.
 710  *
 711  * Maintaining partial slabs in an AVL tree relieves kmem of this additional
 712  * task, however. Since most of the cache's activity is in the magazine layer,
 713  * and allocations from the slab layer represent only a startup cost, the
 714  * overhead of maintaining a balanced tree is not a significant concern compared
 715  * to the opportunity of reducing complexity by eliminating the partial slab
 716  * scanner just described. The overhead of an AVL tree is minimized by
 717  * maintaining only partial slabs in the tree and keeping completely allocated
 718  * slabs separately in a list. To avoid increasing the size of the slab
 719  * structure the AVL linkage pointers are reused for the slab's list linkage,
 720  * since the slab will always be either partial or complete, never stored both
 721  * ways at the same time. To further minimize the overhead of the AVL tree the
 722  * compare function that orders partial slabs by usage divides the range of
 723  * allocated object counts into bins such that counts within the same bin are
 724  * considered equal. Binning partial slabs makes it less likely that allocating
 725  * or freeing a single object will change the slab's order, requiring a tree
 726  * reinsertion (an avl_remove() followed by an avl_add(), both potentially
 727  * requiring some rebalancing of the tree). Allocation counts closest to
 728  * completely free and completely allocated are left unbinned (finely sorted) to
 729  * better support the consolidator's strategy of merging slabs at either
 730  * extreme.
 731  *
 732  * 3.1 Assessing Fragmentation and Selecting Candidate Slabs
 733  *
 734  * The consolidator piggybacks on the kmem maintenance thread and is called on
 735  * the same interval as kmem_cache_update(), once per cache every fifteen
 736  * seconds. kmem maintains a running count of unallocated objects in the slab
 737  * layer (cache_bufslab). The consolidator checks whether that number exceeds
 738  * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether
 739  * there is a significant number of slabs in the cache (arbitrarily a minimum
 740  * 101 total slabs). Unused objects that have fallen out of the magazine layer's
 741  * working set are included in the assessment, and magazines in the depot are
 742  * reaped if those objects would lift cache_bufslab above the fragmentation
 743  * threshold. Once the consolidator decides that a cache is fragmented, it looks
 744  * for a candidate slab to reclaim, starting at the end of the partial slab free
 745  * list and scanning backwards. At first the consolidator is choosy: only a slab
 746  * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a
 747  * single allocated object, regardless of percentage). If there is difficulty
 748  * finding a candidate slab, kmem raises the allocation threshold incrementally,
 749  * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce
 750  * external fragmentation (unused objects on the free list) below 12.5% (1/8),
 751  * even in the worst case of every slab in the cache being almost 7/8 allocated.
 752  * The threshold can also be lowered incrementally when candidate slabs are easy
 753  * to find, and the threshold is reset to the minimum 1/8 as soon as the cache
 754  * is no longer fragmented.
 755  *
 756  * 3.2 Generating Callbacks
 757  *
 758  * Once an eligible slab is chosen, a callback is generated for every allocated
 759  * object on the slab, in the hope that the client will move everything off the
 760  * slab and make it reclaimable. Objects selected as move destinations are
 761  * chosen from slabs at the front of the free list. Assuming slabs in the ideal
 762  * order (most allocated at the front, least allocated at the back) and a
 763  * cooperative client, the consolidator will succeed in removing slabs from both
 764  * ends of the free list, completely allocating on the one hand and completely
 765  * freeing on the other. Objects selected as move destinations are allocated in
 766  * the kmem maintenance thread where move requests are enqueued. A separate
 767  * callback thread removes pending callbacks from the queue and calls the
 768  * client. The separate thread ensures that client code (the move function) does
 769  * not interfere with internal kmem maintenance tasks. A map of pending
 770  * callbacks keyed by object address (the object to be moved) is checked to
 771  * ensure that duplicate callbacks are not generated for the same object.
 772  * Allocating the move destination (the object to move to) prevents subsequent
 773  * callbacks from selecting the same destination as an earlier pending callback.
 774  *
 775  * Move requests can also be generated by kmem_cache_reap() when the system is
 776  * desperate for memory and by kmem_cache_move_notify(), called by the client to
 777  * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible.
 778  * The map of pending callbacks is protected by the same lock that protects the
 779  * slab layer.
 780  *
 781  * When the system is desperate for memory, kmem does not bother to determine
 782  * whether or not the cache exceeds the fragmentation threshold, but tries to
 783  * consolidate as many slabs as possible. Normally, the consolidator chews
 784  * slowly, one sparsely allocated slab at a time during each maintenance
 785  * interval that the cache is fragmented. When desperate, the consolidator
 786  * starts at the last partial slab and enqueues callbacks for every allocated
 787  * object on every partial slab, working backwards until it reaches the first
 788  * partial slab. The first partial slab, meanwhile, advances in pace with the
 789  * consolidator as allocations to supply move destinations for the enqueued
 790  * callbacks use up the highly allocated slabs at the front of the free list.
 791  * Ideally, the overgrown free list collapses like an accordion, starting at
 792  * both ends and ending at the center with a single partial slab.
 793  *
 794  * 3.3 Client Responses
 795  *
 796  * When the client returns KMEM_CBRC_NO in response to the move callback, kmem
 797  * marks the slab that supplied the stuck object non-reclaimable and moves it to
 798  * front of the free list. The slab remains marked as long as it remains on the
 799  * free list, and it appears more allocated to the partial slab compare function
 800  * than any unmarked slab, no matter how many of its objects are allocated.
 801  * Since even one immovable object ties up the entire slab, the goal is to
 802  * completely allocate any slab that cannot be completely freed. kmem does not
 803  * bother generating callbacks to move objects from a marked slab unless the
 804  * system is desperate.
 805  *
 806  * When the client responds KMEM_CBRC_LATER, kmem increments a count for the
 807  * slab. If the client responds LATER too many times, kmem disbelieves and
 808  * treats the response as a NO. The count is cleared when the slab is taken off
 809  * the partial slab list or when the client moves one of the slab's objects.
 810  *
 811  * 4. Observability
 812  *
 813  * A kmem cache's external fragmentation is best observed with 'mdb -k' using
 814  * the ::kmem_slabs dcmd. For a complete description of the command, enter
 815  * '::help kmem_slabs' at the mdb prompt.
 816  */
 817 
 818 #include <sys/kmem_impl.h>
 819 #include <sys/vmem_impl.h>
 820 #include <sys/param.h>
 821 #include <sys/sysmacros.h>
 822 #include <sys/vm.h>
 823 #include <sys/proc.h>
 824 #include <sys/tuneable.h>
 825 #include <sys/systm.h>
 826 #include <sys/cmn_err.h>
 827 #include <sys/debug.h>
 828 #include <sys/sdt.h>
 829 #include <sys/mutex.h>
 830 #include <sys/bitmap.h>
 831 #include <sys/atomic.h>
 832 #include <sys/kobj.h>
 833 #include <sys/disp.h>
 834 #include <vm/seg_kmem.h>
 835 #include <sys/log.h>
 836 #include <sys/callb.h>
 837 #include <sys/taskq.h>
 838 #include <sys/modctl.h>
 839 #include <sys/reboot.h>
 840 #include <sys/id32.h>
 841 #include <sys/zone.h>
 842 #include <sys/netstack.h>
 843 #ifdef  DEBUG
 844 #include <sys/random.h>
 845 #endif
 846 
 847 extern void streams_msg_init(void);
 848 extern int segkp_fromheap;
 849 extern void segkp_cache_free(void);
 850 extern int callout_init_done;
 851 
 852 struct kmem_cache_kstat {
 853         kstat_named_t   kmc_buf_size;
 854         kstat_named_t   kmc_align;
 855         kstat_named_t   kmc_chunk_size;
 856         kstat_named_t   kmc_slab_size;
 857         kstat_named_t   kmc_alloc;
 858         kstat_named_t   kmc_alloc_fail;
 859         kstat_named_t   kmc_free;
 860         kstat_named_t   kmc_depot_alloc;
 861         kstat_named_t   kmc_depot_free;
 862         kstat_named_t   kmc_depot_contention;
 863         kstat_named_t   kmc_slab_alloc;
 864         kstat_named_t   kmc_slab_free;
 865         kstat_named_t   kmc_buf_constructed;
 866         kstat_named_t   kmc_buf_avail;
 867         kstat_named_t   kmc_buf_inuse;
 868         kstat_named_t   kmc_buf_total;
 869         kstat_named_t   kmc_buf_max;
 870         kstat_named_t   kmc_slab_create;
 871         kstat_named_t   kmc_slab_destroy;
 872         kstat_named_t   kmc_vmem_source;
 873         kstat_named_t   kmc_hash_size;
 874         kstat_named_t   kmc_hash_lookup_depth;
 875         kstat_named_t   kmc_hash_rescale;
 876         kstat_named_t   kmc_full_magazines;
 877         kstat_named_t   kmc_empty_magazines;
 878         kstat_named_t   kmc_magazine_size;
 879         kstat_named_t   kmc_reap; /* number of kmem_cache_reap() calls */
 880         kstat_named_t   kmc_defrag; /* attempts to defrag all partial slabs */
 881         kstat_named_t   kmc_scan; /* attempts to defrag one partial slab */
 882         kstat_named_t   kmc_move_callbacks; /* sum of yes, no, later, dn, dk */
 883         kstat_named_t   kmc_move_yes;
 884         kstat_named_t   kmc_move_no;
 885         kstat_named_t   kmc_move_later;
 886         kstat_named_t   kmc_move_dont_need;
 887         kstat_named_t   kmc_move_dont_know; /* obj unrecognized by client ... */
 888         kstat_named_t   kmc_move_hunt_found; /* ... but found in mag layer */
 889         kstat_named_t   kmc_move_slabs_freed; /* slabs freed by consolidator */
 890         kstat_named_t   kmc_move_reclaimable; /* buffers, if consolidator ran */
 891 } kmem_cache_kstat = {
 892         { "buf_size",           KSTAT_DATA_UINT64 },
 893         { "align",              KSTAT_DATA_UINT64 },
 894         { "chunk_size",         KSTAT_DATA_UINT64 },
 895         { "slab_size",          KSTAT_DATA_UINT64 },
 896         { "alloc",              KSTAT_DATA_UINT64 },
 897         { "alloc_fail",         KSTAT_DATA_UINT64 },
 898         { "free",               KSTAT_DATA_UINT64 },
 899         { "depot_alloc",        KSTAT_DATA_UINT64 },
 900         { "depot_free",         KSTAT_DATA_UINT64 },
 901         { "depot_contention",   KSTAT_DATA_UINT64 },
 902         { "slab_alloc",         KSTAT_DATA_UINT64 },
 903         { "slab_free",          KSTAT_DATA_UINT64 },
 904         { "buf_constructed",    KSTAT_DATA_UINT64 },
 905         { "buf_avail",          KSTAT_DATA_UINT64 },
 906         { "buf_inuse",          KSTAT_DATA_UINT64 },
 907         { "buf_total",          KSTAT_DATA_UINT64 },
 908         { "buf_max",            KSTAT_DATA_UINT64 },
 909         { "slab_create",        KSTAT_DATA_UINT64 },
 910         { "slab_destroy",       KSTAT_DATA_UINT64 },
 911         { "vmem_source",        KSTAT_DATA_UINT64 },
 912         { "hash_size",          KSTAT_DATA_UINT64 },
 913         { "hash_lookup_depth",  KSTAT_DATA_UINT64 },
 914         { "hash_rescale",       KSTAT_DATA_UINT64 },
 915         { "full_magazines",     KSTAT_DATA_UINT64 },
 916         { "empty_magazines",    KSTAT_DATA_UINT64 },
 917         { "magazine_size",      KSTAT_DATA_UINT64 },
 918         { "reap",               KSTAT_DATA_UINT64 },
 919         { "defrag",             KSTAT_DATA_UINT64 },
 920         { "scan",               KSTAT_DATA_UINT64 },
 921         { "move_callbacks",     KSTAT_DATA_UINT64 },
 922         { "move_yes",           KSTAT_DATA_UINT64 },
 923         { "move_no",            KSTAT_DATA_UINT64 },
 924         { "move_later",         KSTAT_DATA_UINT64 },
 925         { "move_dont_need",     KSTAT_DATA_UINT64 },
 926         { "move_dont_know",     KSTAT_DATA_UINT64 },
 927         { "move_hunt_found",    KSTAT_DATA_UINT64 },
 928         { "move_slabs_freed",   KSTAT_DATA_UINT64 },
 929         { "move_reclaimable",   KSTAT_DATA_UINT64 },
 930 };
 931 
 932 static kmutex_t kmem_cache_kstat_lock;
 933 
 934 /*
 935  * The default set of caches to back kmem_alloc().
 936  * These sizes should be reevaluated periodically.
 937  *
 938  * We want allocations that are multiples of the coherency granularity
 939  * (64 bytes) to be satisfied from a cache which is a multiple of 64
 940  * bytes, so that it will be 64-byte aligned.  For all multiples of 64,
 941  * the next kmem_cache_size greater than or equal to it must be a
 942  * multiple of 64.
 943  *
 944  * We split the table into two sections:  size <= 4k and size > 4k.  This
 945  * saves a lot of space and cache footprint in our cache tables.
 946  */
 947 static const int kmem_alloc_sizes[] = {
 948         1 * 8,
 949         2 * 8,
 950         3 * 8,
 951         4 * 8,          5 * 8,          6 * 8,          7 * 8,
 952         4 * 16,         5 * 16,         6 * 16,         7 * 16,
 953         4 * 32,         5 * 32,         6 * 32,         7 * 32,
 954         4 * 64,         5 * 64,         6 * 64,         7 * 64,
 955         4 * 128,        5 * 128,        6 * 128,        7 * 128,
 956         P2ALIGN(8192 / 7, 64),
 957         P2ALIGN(8192 / 6, 64),
 958         P2ALIGN(8192 / 5, 64),
 959         P2ALIGN(8192 / 4, 64),
 960         P2ALIGN(8192 / 3, 64),
 961         P2ALIGN(8192 / 2, 64),
 962 };
 963 
 964 static const int kmem_big_alloc_sizes[] = {
 965         2 * 4096,       3 * 4096,
 966         2 * 8192,       3 * 8192,
 967         4 * 8192,       5 * 8192,       6 * 8192,       7 * 8192,
 968         8 * 8192,       9 * 8192,       10 * 8192,      11 * 8192,
 969         12 * 8192,      13 * 8192,      14 * 8192,      15 * 8192,
 970         16 * 8192
 971 };
 972 
 973 #define KMEM_MAXBUF             4096
 974 #define KMEM_BIG_MAXBUF_32BIT   32768
 975 #define KMEM_BIG_MAXBUF         131072
 976 
 977 #define KMEM_BIG_MULTIPLE       4096    /* big_alloc_sizes must be a multiple */
 978 #define KMEM_BIG_SHIFT          12      /* lg(KMEM_BIG_MULTIPLE) */
 979 
 980 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT];
 981 static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT];
 982 
 983 #define KMEM_ALLOC_TABLE_MAX    (KMEM_MAXBUF >> KMEM_ALIGN_SHIFT)
 984 static size_t kmem_big_alloc_table_max = 0;     /* # of filled elements */
 985 
 986 static kmem_magtype_t kmem_magtype[] = {
 987         { 1,    8,      3200,   65536   },
 988         { 3,    16,     256,    32768   },
 989         { 7,    32,     64,     16384   },
 990         { 15,   64,     0,      8192    },
 991         { 31,   64,     0,      4096    },
 992         { 47,   64,     0,      2048    },
 993         { 63,   64,     0,      1024    },
 994         { 95,   64,     0,      512     },
 995         { 143,  64,     0,      0       },
 996 };
 997 
 998 static uint32_t kmem_reaping;
 999 static uint32_t kmem_reaping_idspace;
1000 
1001 /*
1002  * kmem tunables
1003  */
1004 clock_t kmem_reap_interval;     /* cache reaping rate [15 * HZ ticks] */
1005 int kmem_depot_contention = 3;  /* max failed tryenters per real interval */
1006 pgcnt_t kmem_reapahead = 0;     /* start reaping N pages before pageout */
1007 int kmem_panic = 1;             /* whether to panic on error */
1008 int kmem_logging = 1;           /* kmem_log_enter() override */
1009 uint32_t kmem_mtbf = 0;         /* mean time between failures [default: off] */
1010 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */
1011 size_t kmem_content_log_size;   /* content log size [2% of memory] */
1012 size_t kmem_failure_log_size;   /* failure log [4 pages per CPU] */
1013 size_t kmem_slab_log_size;      /* slab create log [4 pages per CPU] */
1014 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */
1015 size_t kmem_lite_minsize = 0;   /* minimum buffer size for KMF_LITE */
1016 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */
1017 int kmem_lite_pcs = 4;          /* number of PCs to store in KMF_LITE mode */
1018 size_t kmem_maxverify;          /* maximum bytes to inspect in debug routines */
1019 size_t kmem_minfirewall;        /* hardware-enforced redzone threshold */
1020 
1021 #ifdef _LP64
1022 size_t  kmem_max_cached = KMEM_BIG_MAXBUF;      /* maximum kmem_alloc cache */
1023 #else
1024 size_t  kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */
1025 #endif
1026 
1027 #ifdef DEBUG
1028 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS;
1029 #else
1030 int kmem_flags = 0;
1031 #endif
1032 int kmem_ready;
1033 
1034 static kmem_cache_t     *kmem_slab_cache;
1035 static kmem_cache_t     *kmem_bufctl_cache;
1036 static kmem_cache_t     *kmem_bufctl_audit_cache;
1037 
1038 static kmutex_t         kmem_cache_lock;        /* inter-cache linkage only */
1039 static list_t           kmem_caches;
1040 
1041 static taskq_t          *kmem_taskq;
1042 static kmutex_t         kmem_flags_lock;
1043 static vmem_t           *kmem_metadata_arena;
1044 static vmem_t           *kmem_msb_arena;        /* arena for metadata caches */
1045 static vmem_t           *kmem_cache_arena;
1046 static vmem_t           *kmem_hash_arena;
1047 static vmem_t           *kmem_log_arena;
1048 static vmem_t           *kmem_oversize_arena;
1049 static vmem_t           *kmem_va_arena;
1050 static vmem_t           *kmem_default_arena;
1051 static vmem_t           *kmem_firewall_va_arena;
1052 static vmem_t           *kmem_firewall_arena;
1053 
1054 /*
1055  * kmem slab consolidator thresholds (tunables)
1056  */
1057 size_t kmem_frag_minslabs = 101;        /* minimum total slabs */
1058 size_t kmem_frag_numer = 1;             /* free buffers (numerator) */
1059 size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */
1060 /*
1061  * Maximum number of slabs from which to move buffers during a single
1062  * maintenance interval while the system is not low on memory.
1063  */
1064 size_t kmem_reclaim_max_slabs = 1;
1065 /*
1066  * Number of slabs to scan backwards from the end of the partial slab list
1067  * when searching for buffers to relocate.
1068  */
1069 size_t kmem_reclaim_scan_range = 12;
1070 
1071 /* consolidator knobs */
1072 boolean_t kmem_move_noreap;
1073 boolean_t kmem_move_blocked;
1074 boolean_t kmem_move_fulltilt;
1075 boolean_t kmem_move_any_partial;
1076 
1077 #ifdef  DEBUG
1078 /*
1079  * kmem consolidator debug tunables:
1080  * Ensure code coverage by occasionally running the consolidator even when the
1081  * caches are not fragmented (they may never be). These intervals are mean time
1082  * in cache maintenance intervals (kmem_cache_update).
1083  */
1084 uint32_t kmem_mtb_move = 60;    /* defrag 1 slab (~15min) */
1085 uint32_t kmem_mtb_reap = 1800;  /* defrag all slabs (~7.5hrs) */
1086 #endif  /* DEBUG */
1087 
1088 static kmem_cache_t     *kmem_defrag_cache;
1089 static kmem_cache_t     *kmem_move_cache;
1090 static taskq_t          *kmem_move_taskq;
1091 
1092 static void kmem_cache_scan(kmem_cache_t *);
1093 static void kmem_cache_defrag(kmem_cache_t *);
1094 static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *);
1095 
1096 
1097 kmem_log_header_t       *kmem_transaction_log;
1098 kmem_log_header_t       *kmem_content_log;
1099 kmem_log_header_t       *kmem_failure_log;
1100 kmem_log_header_t       *kmem_slab_log;
1101 
1102 static int              kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */
1103 
1104 #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller)                       \
1105         if ((count) > 0) {                                           \
1106                 pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history; \
1107                 pc_t *_e;                                               \
1108                 /* memmove() the old entries down one notch */          \
1109                 for (_e = &_s[(count) - 1]; _e > _s; _e--)               \
1110                         *_e = *(_e - 1);                                \
1111                 *_s = (uintptr_t)(caller);                              \
1112         }
1113 
1114 #define KMERR_MODIFIED  0       /* buffer modified while on freelist */
1115 #define KMERR_REDZONE   1       /* redzone violation (write past end of buf) */
1116 #define KMERR_DUPFREE   2       /* freed a buffer twice */
1117 #define KMERR_BADADDR   3       /* freed a bad (unallocated) address */
1118 #define KMERR_BADBUFTAG 4       /* buftag corrupted */
1119 #define KMERR_BADBUFCTL 5       /* bufctl corrupted */
1120 #define KMERR_BADCACHE  6       /* freed a buffer to the wrong cache */
1121 #define KMERR_BADSIZE   7       /* alloc size != free size */
1122 #define KMERR_BADBASE   8       /* buffer base address wrong */
1123 
1124 struct {
1125         hrtime_t        kmp_timestamp;  /* timestamp of panic */
1126         int             kmp_error;      /* type of kmem error */
1127         void            *kmp_buffer;    /* buffer that induced panic */
1128         void            *kmp_realbuf;   /* real start address for buffer */
1129         kmem_cache_t    *kmp_cache;     /* buffer's cache according to client */
1130         kmem_cache_t    *kmp_realcache; /* actual cache containing buffer */
1131         kmem_slab_t     *kmp_slab;      /* slab accoring to kmem_findslab() */
1132         kmem_bufctl_t   *kmp_bufctl;    /* bufctl */
1133 } kmem_panic_info;
1134 
1135 
1136 static void
1137 copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
1138 {
1139         uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1140         uint64_t *buf = buf_arg;
1141 
1142         while (buf < bufend)
1143                 *buf++ = pattern;
1144 }
1145 
1146 static void *
1147 verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
1148 {
1149         uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1150         uint64_t *buf;
1151 
1152         for (buf = buf_arg; buf < bufend; buf++)
1153                 if (*buf != pattern)
1154                         return (buf);
1155         return (NULL);
1156 }
1157 
1158 static void *
1159 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
1160 {
1161         uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1162         uint64_t *buf;
1163 
1164         for (buf = buf_arg; buf < bufend; buf++) {
1165                 if (*buf != old) {
1166                         copy_pattern(old, buf_arg,
1167                             (char *)buf - (char *)buf_arg);
1168                         return (buf);
1169                 }
1170                 *buf = new;
1171         }
1172 
1173         return (NULL);
1174 }
1175 
1176 static void
1177 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1178 {
1179         kmem_cache_t *cp;
1180 
1181         mutex_enter(&kmem_cache_lock);
1182         for (cp = list_head(&kmem_caches); cp != NULL;
1183             cp = list_next(&kmem_caches, cp))
1184                 if (tq != NULL)
1185                         (void) taskq_dispatch(tq, (task_func_t *)func, cp,
1186                             tqflag);
1187                 else
1188                         func(cp);
1189         mutex_exit(&kmem_cache_lock);
1190 }
1191 
1192 static void
1193 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1194 {
1195         kmem_cache_t *cp;
1196 
1197         mutex_enter(&kmem_cache_lock);
1198         for (cp = list_head(&kmem_caches); cp != NULL;
1199             cp = list_next(&kmem_caches, cp)) {
1200                 if (!(cp->cache_cflags & KMC_IDENTIFIER))
1201                         continue;
1202                 if (tq != NULL)
1203                         (void) taskq_dispatch(tq, (task_func_t *)func, cp,
1204                             tqflag);
1205                 else
1206                         func(cp);
1207         }
1208         mutex_exit(&kmem_cache_lock);
1209 }
1210 
1211 /*
1212  * Debugging support.  Given a buffer address, find its slab.
1213  */
1214 static kmem_slab_t *
1215 kmem_findslab(kmem_cache_t *cp, void *buf)
1216 {
1217         kmem_slab_t *sp;
1218 
1219         mutex_enter(&cp->cache_lock);
1220         for (sp = list_head(&cp->cache_complete_slabs); sp != NULL;
1221             sp = list_next(&cp->cache_complete_slabs, sp)) {
1222                 if (KMEM_SLAB_MEMBER(sp, buf)) {
1223                         mutex_exit(&cp->cache_lock);
1224                         return (sp);
1225                 }
1226         }
1227         for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL;
1228             sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) {
1229                 if (KMEM_SLAB_MEMBER(sp, buf)) {
1230                         mutex_exit(&cp->cache_lock);
1231                         return (sp);
1232                 }
1233         }
1234         mutex_exit(&cp->cache_lock);
1235 
1236         return (NULL);
1237 }
1238 
1239 static void
1240 kmem_error(int error, kmem_cache_t *cparg, void *bufarg)
1241 {
1242         kmem_buftag_t *btp = NULL;
1243         kmem_bufctl_t *bcp = NULL;
1244         kmem_cache_t *cp = cparg;
1245         kmem_slab_t *sp;
1246         uint64_t *off;
1247         void *buf = bufarg;
1248 
1249         kmem_logging = 0;       /* stop logging when a bad thing happens */
1250 
1251         kmem_panic_info.kmp_timestamp = gethrtime();
1252 
1253         sp = kmem_findslab(cp, buf);
1254         if (sp == NULL) {
1255                 for (cp = list_tail(&kmem_caches); cp != NULL;
1256                     cp = list_prev(&kmem_caches, cp)) {
1257                         if ((sp = kmem_findslab(cp, buf)) != NULL)
1258                                 break;
1259                 }
1260         }
1261 
1262         if (sp == NULL) {
1263                 cp = NULL;
1264                 error = KMERR_BADADDR;
1265         } else {
1266                 if (cp != cparg)
1267                         error = KMERR_BADCACHE;
1268                 else
1269                         buf = (char *)bufarg - ((uintptr_t)bufarg -
1270                             (uintptr_t)sp->slab_base) % cp->cache_chunksize;
1271                 if (buf != bufarg)
1272                         error = KMERR_BADBASE;
1273                 if (cp->cache_flags & KMF_BUFTAG)
1274                         btp = KMEM_BUFTAG(cp, buf);
1275                 if (cp->cache_flags & KMF_HASH) {
1276                         mutex_enter(&cp->cache_lock);
1277                         for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
1278                                 if (bcp->bc_addr == buf)
1279                                         break;
1280                         mutex_exit(&cp->cache_lock);
1281                         if (bcp == NULL && btp != NULL)
1282                                 bcp = btp->bt_bufctl;
1283                         if (kmem_findslab(cp->cache_bufctl_cache, bcp) ==
1284                             NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) ||
1285                             bcp->bc_addr != buf) {
1286                                 error = KMERR_BADBUFCTL;
1287                                 bcp = NULL;
1288                         }
1289                 }
1290         }
1291 
1292         kmem_panic_info.kmp_error = error;
1293         kmem_panic_info.kmp_buffer = bufarg;
1294         kmem_panic_info.kmp_realbuf = buf;
1295         kmem_panic_info.kmp_cache = cparg;
1296         kmem_panic_info.kmp_realcache = cp;
1297         kmem_panic_info.kmp_slab = sp;
1298         kmem_panic_info.kmp_bufctl = bcp;
1299 
1300         printf("kernel memory allocator: ");
1301 
1302         switch (error) {
1303 
1304         case KMERR_MODIFIED:
1305                 printf("buffer modified after being freed\n");
1306                 off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1307                 if (off == NULL)        /* shouldn't happen */
1308                         off = buf;
1309                 printf("modification occurred at offset 0x%lx "
1310                     "(0x%llx replaced by 0x%llx)\n",
1311                     (uintptr_t)off - (uintptr_t)buf,
1312                     (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off);
1313                 break;
1314 
1315         case KMERR_REDZONE:
1316                 printf("redzone violation: write past end of buffer\n");
1317                 break;
1318 
1319         case KMERR_BADADDR:
1320                 printf("invalid free: buffer not in cache\n");
1321                 break;
1322 
1323         case KMERR_DUPFREE:
1324                 printf("duplicate free: buffer freed twice\n");
1325                 break;
1326 
1327         case KMERR_BADBUFTAG:
1328                 printf("boundary tag corrupted\n");
1329                 printf("bcp ^ bxstat = %lx, should be %lx\n",
1330                     (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
1331                     KMEM_BUFTAG_FREE);
1332                 break;
1333 
1334         case KMERR_BADBUFCTL:
1335                 printf("bufctl corrupted\n");
1336                 break;
1337 
1338         case KMERR_BADCACHE:
1339                 printf("buffer freed to wrong cache\n");
1340                 printf("buffer was allocated from %s,\n", cp->cache_name);
1341                 printf("caller attempting free to %s.\n", cparg->cache_name);
1342                 break;
1343 
1344         case KMERR_BADSIZE:
1345                 printf("bad free: free size (%u) != alloc size (%u)\n",
1346                     KMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
1347                     KMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
1348                 break;
1349 
1350         case KMERR_BADBASE:
1351                 printf("bad free: free address (%p) != alloc address (%p)\n",
1352                     bufarg, buf);
1353                 break;
1354         }
1355 
1356         printf("buffer=%p  bufctl=%p  cache: %s\n",
1357             bufarg, (void *)bcp, cparg->cache_name);
1358 
1359         if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) &&
1360             error != KMERR_BADBUFCTL) {
1361                 int d;
1362                 timestruc_t ts;
1363                 kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp;
1364 
1365                 hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts);
1366                 printf("previous transaction on buffer %p:\n", buf);
1367                 printf("thread=%p  time=T-%ld.%09ld  slab=%p  cache: %s\n",
1368                     (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
1369                     (void *)sp, cp->cache_name);
1370                 for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) {
1371                         ulong_t off;
1372                         char *sym = kobj_getsymname(bcap->bc_stack[d], &off);
1373                         printf("%s+%lx\n", sym ? sym : "?", off);
1374                 }
1375         }
1376         if (kmem_panic > 0)
1377                 panic("kernel heap corruption detected");
1378         if (kmem_panic == 0)
1379                 debug_enter(NULL);
1380         kmem_logging = 1;       /* resume logging */
1381 }
1382 
1383 static kmem_log_header_t *
1384 kmem_log_init(size_t logsize)
1385 {
1386         kmem_log_header_t *lhp;
1387         int nchunks = 4 * max_ncpus;
1388         size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus];
1389         int i;
1390 
1391         /*
1392          * Make sure that lhp->lh_cpu[] is nicely aligned
1393          * to prevent false sharing of cache lines.
1394          */
1395         lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN);
1396         lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
1397             NULL, NULL, VM_SLEEP);
1398         bzero(lhp, lhsize);
1399 
1400         mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL);
1401         lhp->lh_nchunks = nchunks;
1402         lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE);
1403         lhp->lh_base = vmem_alloc(kmem_log_arena,
1404             lhp->lh_chunksize * nchunks, VM_SLEEP);
1405         lhp->lh_free = vmem_alloc(kmem_log_arena,
1406             nchunks * sizeof (int), VM_SLEEP);
1407         bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
1408 
1409         for (i = 0; i < max_ncpus; i++) {
1410                 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
1411                 mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL);
1412                 clhp->clh_chunk = i;
1413         }
1414 
1415         for (i = max_ncpus; i < nchunks; i++)
1416                 lhp->lh_free[i] = i;
1417 
1418         lhp->lh_head = max_ncpus;
1419         lhp->lh_tail = 0;
1420 
1421         return (lhp);
1422 }
1423 
1424 static void *
1425 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size)
1426 {
1427         void *logspace;
1428         kmem_cpu_log_header_t *clhp;
1429 
1430         if (lhp == NULL || kmem_logging == 0 || panicstr)
1431                 return (NULL);
1432 
1433         clhp = &lhp->lh_cpu[CPU->cpu_seqid];
1434 
1435         mutex_enter(&clhp->clh_lock);
1436         clhp->clh_hits++;
1437         if (size > clhp->clh_avail) {
1438                 mutex_enter(&lhp->lh_lock);
1439                 lhp->lh_hits++;
1440                 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
1441                 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
1442                 clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
1443                 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
1444                 clhp->clh_current = lhp->lh_base +
1445                     clhp->clh_chunk * lhp->lh_chunksize;
1446                 clhp->clh_avail = lhp->lh_chunksize;
1447                 if (size > lhp->lh_chunksize)
1448                         size = lhp->lh_chunksize;
1449                 mutex_exit(&lhp->lh_lock);
1450         }
1451         logspace = clhp->clh_current;
1452         clhp->clh_current += size;
1453         clhp->clh_avail -= size;
1454         bcopy(data, logspace, size);
1455         mutex_exit(&clhp->clh_lock);
1456         return (logspace);
1457 }
1458 
1459 #define KMEM_AUDIT(lp, cp, bcp)                                         \
1460 {                                                                       \
1461         kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp);       \
1462         _bcp->bc_timestamp = gethrtime();                            \
1463         _bcp->bc_thread = curthread;                                 \
1464         _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH);    \
1465         _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp));       \
1466 }
1467 
1468 static void
1469 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp,
1470     kmem_slab_t *sp, void *addr)
1471 {
1472         kmem_bufctl_audit_t bca;
1473 
1474         bzero(&bca, sizeof (kmem_bufctl_audit_t));
1475         bca.bc_addr = addr;
1476         bca.bc_slab = sp;
1477         bca.bc_cache = cp;
1478         KMEM_AUDIT(lp, cp, &bca);
1479 }
1480 
1481 /*
1482  * Create a new slab for cache cp.
1483  */
1484 static kmem_slab_t *
1485 kmem_slab_create(kmem_cache_t *cp, int kmflag)
1486 {
1487         size_t slabsize = cp->cache_slabsize;
1488         size_t chunksize = cp->cache_chunksize;
1489         int cache_flags = cp->cache_flags;
1490         size_t color, chunks;
1491         char *buf, *slab;
1492         kmem_slab_t *sp;
1493         kmem_bufctl_t *bcp;
1494         vmem_t *vmp = cp->cache_arena;
1495 
1496         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1497 
1498         color = cp->cache_color + cp->cache_align;
1499         if (color > cp->cache_maxcolor)
1500                 color = cp->cache_mincolor;
1501         cp->cache_color = color;
1502 
1503         slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS);
1504 
1505         if (slab == NULL)
1506                 goto vmem_alloc_failure;
1507 
1508         ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
1509 
1510         /*
1511          * Reverify what was already checked in kmem_cache_set_move(), since the
1512          * consolidator depends (for correctness) on slabs being initialized
1513          * with the 0xbaddcafe memory pattern (setting a low order bit usable by
1514          * clients to distinguish uninitialized memory from known objects).
1515          */
1516         ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH));
1517         if (!(cp->cache_cflags & KMC_NOTOUCH))
1518                 copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize);
1519 
1520         if (cache_flags & KMF_HASH) {
1521                 if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL)
1522                         goto slab_alloc_failure;
1523                 chunks = (slabsize - color) / chunksize;
1524         } else {
1525                 sp = KMEM_SLAB(cp, slab);
1526                 chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize;
1527         }
1528 
1529         sp->slab_cache       = cp;
1530         sp->slab_head        = NULL;
1531         sp->slab_refcnt      = 0;
1532         sp->slab_base        = buf = slab + color;
1533         sp->slab_chunks      = chunks;
1534         sp->slab_stuck_offset = (uint32_t)-1;
1535         sp->slab_later_count = 0;
1536         sp->slab_flags = 0;
1537 
1538         ASSERT(chunks > 0);
1539         while (chunks-- != 0) {
1540                 if (cache_flags & KMF_HASH) {
1541                         bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag);
1542                         if (bcp == NULL)
1543                                 goto bufctl_alloc_failure;
1544                         if (cache_flags & KMF_AUDIT) {
1545                                 kmem_bufctl_audit_t *bcap =
1546                                     (kmem_bufctl_audit_t *)bcp;
1547                                 bzero(bcap, sizeof (kmem_bufctl_audit_t));
1548                                 bcap->bc_cache = cp;
1549                         }
1550                         bcp->bc_addr = buf;
1551                         bcp->bc_slab = sp;
1552                 } else {
1553                         bcp = KMEM_BUFCTL(cp, buf);
1554                 }
1555                 if (cache_flags & KMF_BUFTAG) {
1556                         kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1557                         btp->bt_redzone = KMEM_REDZONE_PATTERN;
1558                         btp->bt_bufctl = bcp;
1559                         btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1560                         if (cache_flags & KMF_DEADBEEF) {
1561                                 copy_pattern(KMEM_FREE_PATTERN, buf,
1562                                     cp->cache_verify);
1563                         }
1564                 }
1565                 bcp->bc_next = sp->slab_head;
1566                 sp->slab_head = bcp;
1567                 buf += chunksize;
1568         }
1569 
1570         kmem_log_event(kmem_slab_log, cp, sp, slab);
1571 
1572         return (sp);
1573 
1574 bufctl_alloc_failure:
1575 
1576         while ((bcp = sp->slab_head) != NULL) {
1577                 sp->slab_head = bcp->bc_next;
1578                 kmem_cache_free(cp->cache_bufctl_cache, bcp);
1579         }
1580         kmem_cache_free(kmem_slab_cache, sp);
1581 
1582 slab_alloc_failure:
1583 
1584         vmem_free(vmp, slab, slabsize);
1585 
1586 vmem_alloc_failure:
1587 
1588         kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1589         atomic_inc_64(&cp->cache_alloc_fail);
1590 
1591         return (NULL);
1592 }
1593 
1594 /*
1595  * Destroy a slab.
1596  */
1597 static void
1598 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp)
1599 {
1600         vmem_t *vmp = cp->cache_arena;
1601         void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
1602 
1603         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1604         ASSERT(sp->slab_refcnt == 0);
1605 
1606         if (cp->cache_flags & KMF_HASH) {
1607                 kmem_bufctl_t *bcp;
1608                 while ((bcp = sp->slab_head) != NULL) {
1609                         sp->slab_head = bcp->bc_next;
1610                         kmem_cache_free(cp->cache_bufctl_cache, bcp);
1611                 }
1612                 kmem_cache_free(kmem_slab_cache, sp);
1613         }
1614         vmem_free(vmp, slab, cp->cache_slabsize);
1615 }
1616 
1617 static void *
1618 kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill)
1619 {
1620         kmem_bufctl_t *bcp, **hash_bucket;
1621         void *buf;
1622         boolean_t new_slab = (sp->slab_refcnt == 0);
1623 
1624         ASSERT(MUTEX_HELD(&cp->cache_lock));
1625         /*
1626          * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we
1627          * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the
1628          * slab is newly created.
1629          */
1630         ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) &&
1631             (sp == avl_first(&cp->cache_partial_slabs))));
1632         ASSERT(sp->slab_cache == cp);
1633 
1634         cp->cache_slab_alloc++;
1635         cp->cache_bufslab--;
1636         sp->slab_refcnt++;
1637 
1638         bcp = sp->slab_head;
1639         sp->slab_head = bcp->bc_next;
1640 
1641         if (cp->cache_flags & KMF_HASH) {
1642                 /*
1643                  * Add buffer to allocated-address hash table.
1644                  */
1645                 buf = bcp->bc_addr;
1646                 hash_bucket = KMEM_HASH(cp, buf);
1647                 bcp->bc_next = *hash_bucket;
1648                 *hash_bucket = bcp;
1649                 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1650                         KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1651                 }
1652         } else {
1653                 buf = KMEM_BUF(cp, bcp);
1654         }
1655 
1656         ASSERT(KMEM_SLAB_MEMBER(sp, buf));
1657 
1658         if (sp->slab_head == NULL) {
1659                 ASSERT(KMEM_SLAB_IS_ALL_USED(sp));
1660                 if (new_slab) {
1661                         ASSERT(sp->slab_chunks == 1);
1662                 } else {
1663                         ASSERT(sp->slab_chunks > 1); /* the slab was partial */
1664                         avl_remove(&cp->cache_partial_slabs, sp);
1665                         sp->slab_later_count = 0; /* clear history */
1666                         sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
1667                         sp->slab_stuck_offset = (uint32_t)-1;
1668                 }
1669                 list_insert_head(&cp->cache_complete_slabs, sp);
1670                 cp->cache_complete_slab_count++;
1671                 return (buf);
1672         }
1673 
1674         ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
1675         /*
1676          * Peek to see if the magazine layer is enabled before
1677          * we prefill.  We're not holding the cpu cache lock,
1678          * so the peek could be wrong, but there's no harm in it.
1679          */
1680         if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) &&
1681             (KMEM_CPU_CACHE(cp)->cc_magsize != 0))  {
1682                 kmem_slab_prefill(cp, sp);
1683                 return (buf);
1684         }
1685 
1686         if (new_slab) {
1687                 avl_add(&cp->cache_partial_slabs, sp);
1688                 return (buf);
1689         }
1690 
1691         /*
1692          * The slab is now more allocated than it was, so the
1693          * order remains unchanged.
1694          */
1695         ASSERT(!avl_update(&cp->cache_partial_slabs, sp));
1696         return (buf);
1697 }
1698 
1699 /*
1700  * Allocate a raw (unconstructed) buffer from cp's slab layer.
1701  */
1702 static void *
1703 kmem_slab_alloc(kmem_cache_t *cp, int kmflag)
1704 {
1705         kmem_slab_t *sp;
1706         void *buf;
1707         boolean_t test_destructor;
1708 
1709         mutex_enter(&cp->cache_lock);
1710         test_destructor = (cp->cache_slab_alloc == 0);
1711         sp = avl_first(&cp->cache_partial_slabs);
1712         if (sp == NULL) {
1713                 ASSERT(cp->cache_bufslab == 0);
1714 
1715                 /*
1716                  * The freelist is empty.  Create a new slab.
1717                  */
1718                 mutex_exit(&cp->cache_lock);
1719                 if ((sp = kmem_slab_create(cp, kmflag)) == NULL) {
1720                         return (NULL);
1721                 }
1722                 mutex_enter(&cp->cache_lock);
1723                 cp->cache_slab_create++;
1724                 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
1725                         cp->cache_bufmax = cp->cache_buftotal;
1726                 cp->cache_bufslab += sp->slab_chunks;
1727         }
1728 
1729         buf = kmem_slab_alloc_impl(cp, sp, B_TRUE);
1730         ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1731             (cp->cache_complete_slab_count +
1732             avl_numnodes(&cp->cache_partial_slabs) +
1733             (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1734         mutex_exit(&cp->cache_lock);
1735 
1736         if (test_destructor && cp->cache_destructor != NULL) {
1737                 /*
1738                  * On the first kmem_slab_alloc(), assert that it is valid to
1739                  * call the destructor on a newly constructed object without any
1740                  * client involvement.
1741                  */
1742                 if ((cp->cache_constructor == NULL) ||
1743                     cp->cache_constructor(buf, cp->cache_private,
1744                     kmflag) == 0) {
1745                         cp->cache_destructor(buf, cp->cache_private);
1746                 }
1747                 copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf,
1748                     cp->cache_bufsize);
1749                 if (cp->cache_flags & KMF_DEADBEEF) {
1750                         copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1751                 }
1752         }
1753 
1754         return (buf);
1755 }
1756 
1757 static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *);
1758 
1759 /*
1760  * Free a raw (unconstructed) buffer to cp's slab layer.
1761  */
1762 static void
1763 kmem_slab_free(kmem_cache_t *cp, void *buf)
1764 {
1765         kmem_slab_t *sp;
1766         kmem_bufctl_t *bcp, **prev_bcpp;
1767 
1768         ASSERT(buf != NULL);
1769 
1770         mutex_enter(&cp->cache_lock);
1771         cp->cache_slab_free++;
1772 
1773         if (cp->cache_flags & KMF_HASH) {
1774                 /*
1775                  * Look up buffer in allocated-address hash table.
1776                  */
1777                 prev_bcpp = KMEM_HASH(cp, buf);
1778                 while ((bcp = *prev_bcpp) != NULL) {
1779                         if (bcp->bc_addr == buf) {
1780                                 *prev_bcpp = bcp->bc_next;
1781                                 sp = bcp->bc_slab;
1782                                 break;
1783                         }
1784                         cp->cache_lookup_depth++;
1785                         prev_bcpp = &bcp->bc_next;
1786                 }
1787         } else {
1788                 bcp = KMEM_BUFCTL(cp, buf);
1789                 sp = KMEM_SLAB(cp, buf);
1790         }
1791 
1792         if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) {
1793                 mutex_exit(&cp->cache_lock);
1794                 kmem_error(KMERR_BADADDR, cp, buf);
1795                 return;
1796         }
1797 
1798         if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) {
1799                 /*
1800                  * If this is the buffer that prevented the consolidator from
1801                  * clearing the slab, we can reset the slab flags now that the
1802                  * buffer is freed. (It makes sense to do this in
1803                  * kmem_cache_free(), where the client gives up ownership of the
1804                  * buffer, but on the hot path the test is too expensive.)
1805                  */
1806                 kmem_slab_move_yes(cp, sp, buf);
1807         }
1808 
1809         if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1810                 if (cp->cache_flags & KMF_CONTENTS)
1811                         ((kmem_bufctl_audit_t *)bcp)->bc_contents =
1812                             kmem_log_enter(kmem_content_log, buf,
1813                             cp->cache_contents);
1814                 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1815         }
1816 
1817         bcp->bc_next = sp->slab_head;
1818         sp->slab_head = bcp;
1819 
1820         cp->cache_bufslab++;
1821         ASSERT(sp->slab_refcnt >= 1);
1822 
1823         if (--sp->slab_refcnt == 0) {
1824                 /*
1825                  * There are no outstanding allocations from this slab,
1826                  * so we can reclaim the memory.
1827                  */
1828                 if (sp->slab_chunks == 1) {
1829                         list_remove(&cp->cache_complete_slabs, sp);
1830                         cp->cache_complete_slab_count--;
1831                 } else {
1832                         avl_remove(&cp->cache_partial_slabs, sp);
1833                 }
1834 
1835                 cp->cache_buftotal -= sp->slab_chunks;
1836                 cp->cache_bufslab -= sp->slab_chunks;
1837                 /*
1838                  * Defer releasing the slab to the virtual memory subsystem
1839                  * while there is a pending move callback, since we guarantee
1840                  * that buffers passed to the move callback have only been
1841                  * touched by kmem or by the client itself. Since the memory
1842                  * patterns baddcafe (uninitialized) and deadbeef (freed) both
1843                  * set at least one of the two lowest order bits, the client can
1844                  * test those bits in the move callback to determine whether or
1845                  * not it knows about the buffer (assuming that the client also
1846                  * sets one of those low order bits whenever it frees a buffer).
1847                  */
1848                 if (cp->cache_defrag == NULL ||
1849                     (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) &&
1850                     !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) {
1851                         cp->cache_slab_destroy++;
1852                         mutex_exit(&cp->cache_lock);
1853                         kmem_slab_destroy(cp, sp);
1854                 } else {
1855                         list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
1856                         /*
1857                          * Slabs are inserted at both ends of the deadlist to
1858                          * distinguish between slabs freed while move callbacks
1859                          * are pending (list head) and a slab freed while the
1860                          * lock is dropped in kmem_move_buffers() (list tail) so
1861                          * that in both cases slab_destroy() is called from the
1862                          * right context.
1863                          */
1864                         if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
1865                                 list_insert_tail(deadlist, sp);
1866                         } else {
1867                                 list_insert_head(deadlist, sp);
1868                         }
1869                         cp->cache_defrag->kmd_deadcount++;
1870                         mutex_exit(&cp->cache_lock);
1871                 }
1872                 return;
1873         }
1874 
1875         if (bcp->bc_next == NULL) {
1876                 /* Transition the slab from completely allocated to partial. */
1877                 ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1));
1878                 ASSERT(sp->slab_chunks > 1);
1879                 list_remove(&cp->cache_complete_slabs, sp);
1880                 cp->cache_complete_slab_count--;
1881                 avl_add(&cp->cache_partial_slabs, sp);
1882         } else {
1883                 (void) avl_update_gt(&cp->cache_partial_slabs, sp);
1884         }
1885 
1886         ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1887             (cp->cache_complete_slab_count +
1888             avl_numnodes(&cp->cache_partial_slabs) +
1889             (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1890         mutex_exit(&cp->cache_lock);
1891 }
1892 
1893 /*
1894  * Return -1 if kmem_error, 1 if constructor fails, 0 if successful.
1895  */
1896 static int
1897 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct,
1898     caddr_t caller)
1899 {
1900         kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1901         kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1902         uint32_t mtbf;
1903 
1904         if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1905                 kmem_error(KMERR_BADBUFTAG, cp, buf);
1906                 return (-1);
1907         }
1908 
1909         btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC;
1910 
1911         if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1912                 kmem_error(KMERR_BADBUFCTL, cp, buf);
1913                 return (-1);
1914         }
1915 
1916         if (cp->cache_flags & KMF_DEADBEEF) {
1917                 if (!construct && (cp->cache_flags & KMF_LITE)) {
1918                         if (*(uint64_t *)buf != KMEM_FREE_PATTERN) {
1919                                 kmem_error(KMERR_MODIFIED, cp, buf);
1920                                 return (-1);
1921                         }
1922                         if (cp->cache_constructor != NULL)
1923                                 *(uint64_t *)buf = btp->bt_redzone;
1924                         else
1925                                 *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN;
1926                 } else {
1927                         construct = 1;
1928                         if (verify_and_copy_pattern(KMEM_FREE_PATTERN,
1929                             KMEM_UNINITIALIZED_PATTERN, buf,
1930                             cp->cache_verify)) {
1931                                 kmem_error(KMERR_MODIFIED, cp, buf);
1932                                 return (-1);
1933                         }
1934                 }
1935         }
1936         btp->bt_redzone = KMEM_REDZONE_PATTERN;
1937 
1938         if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 &&
1939             gethrtime() % mtbf == 0 &&
1940             (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) {
1941                 kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1942                 if (!construct && cp->cache_destructor != NULL)
1943                         cp->cache_destructor(buf, cp->cache_private);
1944         } else {
1945                 mtbf = 0;
1946         }
1947 
1948         if (mtbf || (construct && cp->cache_constructor != NULL &&
1949             cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) {
1950                 atomic_inc_64(&cp->cache_alloc_fail);
1951                 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1952                 if (cp->cache_flags & KMF_DEADBEEF)
1953                         copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1954                 kmem_slab_free(cp, buf);
1955                 return (1);
1956         }
1957 
1958         if (cp->cache_flags & KMF_AUDIT) {
1959                 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1960         }
1961 
1962         if ((cp->cache_flags & KMF_LITE) &&
1963             !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
1964                 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
1965         }
1966 
1967         return (0);
1968 }
1969 
1970 static int
1971 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller)
1972 {
1973         kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1974         kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1975         kmem_slab_t *sp;
1976 
1977         if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) {
1978                 if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1979                         kmem_error(KMERR_DUPFREE, cp, buf);
1980                         return (-1);
1981                 }
1982                 sp = kmem_findslab(cp, buf);
1983                 if (sp == NULL || sp->slab_cache != cp)
1984                         kmem_error(KMERR_BADADDR, cp, buf);
1985                 else
1986                         kmem_error(KMERR_REDZONE, cp, buf);
1987                 return (-1);
1988         }
1989 
1990         btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1991 
1992         if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1993                 kmem_error(KMERR_BADBUFCTL, cp, buf);
1994                 return (-1);
1995         }
1996 
1997         if (btp->bt_redzone != KMEM_REDZONE_PATTERN) {
1998                 kmem_error(KMERR_REDZONE, cp, buf);
1999                 return (-1);
2000         }
2001 
2002         if (cp->cache_flags & KMF_AUDIT) {
2003                 if (cp->cache_flags & KMF_CONTENTS)
2004                         bcp->bc_contents = kmem_log_enter(kmem_content_log,
2005                             buf, cp->cache_contents);
2006                 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
2007         }
2008 
2009         if ((cp->cache_flags & KMF_LITE) &&
2010             !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
2011                 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
2012         }
2013 
2014         if (cp->cache_flags & KMF_DEADBEEF) {
2015                 if (cp->cache_flags & KMF_LITE)
2016                         btp->bt_redzone = *(uint64_t *)buf;
2017                 else if (cp->cache_destructor != NULL)
2018                         cp->cache_destructor(buf, cp->cache_private);
2019 
2020                 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
2021         }
2022 
2023         return (0);
2024 }
2025 
2026 /*
2027  * Free each object in magazine mp to cp's slab layer, and free mp itself.
2028  */
2029 static void
2030 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds)
2031 {
2032         int round;
2033 
2034         ASSERT(!list_link_active(&cp->cache_link) ||
2035             taskq_member(kmem_taskq, curthread));
2036 
2037         for (round = 0; round < nrounds; round++) {
2038                 void *buf = mp->mag_round[round];
2039 
2040                 if (cp->cache_flags & KMF_DEADBEEF) {
2041                         if (verify_pattern(KMEM_FREE_PATTERN, buf,
2042                             cp->cache_verify) != NULL) {
2043                                 kmem_error(KMERR_MODIFIED, cp, buf);
2044                                 continue;
2045                         }
2046                         if ((cp->cache_flags & KMF_LITE) &&
2047                             cp->cache_destructor != NULL) {
2048                                 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2049                                 *(uint64_t *)buf = btp->bt_redzone;
2050                                 cp->cache_destructor(buf, cp->cache_private);
2051                                 *(uint64_t *)buf = KMEM_FREE_PATTERN;
2052                         }
2053                 } else if (cp->cache_destructor != NULL) {
2054                         cp->cache_destructor(buf, cp->cache_private);
2055                 }
2056 
2057                 kmem_slab_free(cp, buf);
2058         }
2059         ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2060         kmem_cache_free(cp->cache_magtype->mt_cache, mp);
2061 }
2062 
2063 /*
2064  * Allocate a magazine from the depot.
2065  */
2066 static kmem_magazine_t *
2067 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp)
2068 {
2069         kmem_magazine_t *mp;
2070 
2071         /*
2072          * If we can't get the depot lock without contention,
2073          * update our contention count.  We use the depot
2074          * contention rate to determine whether we need to
2075          * increase the magazine size for better scalability.
2076          */
2077         if (!mutex_tryenter(&cp->cache_depot_lock)) {
2078                 mutex_enter(&cp->cache_depot_lock);
2079                 cp->cache_depot_contention++;
2080         }
2081 
2082         if ((mp = mlp->ml_list) != NULL) {
2083                 ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2084                 mlp->ml_list = mp->mag_next;
2085                 if (--mlp->ml_total < mlp->ml_min)
2086                         mlp->ml_min = mlp->ml_total;
2087                 mlp->ml_alloc++;
2088         }
2089 
2090         mutex_exit(&cp->cache_depot_lock);
2091 
2092         return (mp);
2093 }
2094 
2095 /*
2096  * Free a magazine to the depot.
2097  */
2098 static void
2099 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp)
2100 {
2101         mutex_enter(&cp->cache_depot_lock);
2102         ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2103         mp->mag_next = mlp->ml_list;
2104         mlp->ml_list = mp;
2105         mlp->ml_total++;
2106         mutex_exit(&cp->cache_depot_lock);
2107 }
2108 
2109 /*
2110  * Update the working set statistics for cp's depot.
2111  */
2112 static void
2113 kmem_depot_ws_update(kmem_cache_t *cp)
2114 {
2115         mutex_enter(&cp->cache_depot_lock);
2116         cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
2117         cp->cache_full.ml_min = cp->cache_full.ml_total;
2118         cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
2119         cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2120         mutex_exit(&cp->cache_depot_lock);
2121 }
2122 
2123 /*
2124  * Set the working set statistics for cp's depot to zero.  (Everything is
2125  * eligible for reaping.)
2126  */
2127 static void
2128 kmem_depot_ws_zero(kmem_cache_t *cp)
2129 {
2130         mutex_enter(&cp->cache_depot_lock);
2131         cp->cache_full.ml_reaplimit = cp->cache_full.ml_total;
2132         cp->cache_full.ml_min = cp->cache_full.ml_total;
2133         cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_total;
2134         cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2135         mutex_exit(&cp->cache_depot_lock);
2136 }
2137 
2138 /*
2139  * The number of bytes to reap before we call kpreempt(). The default (1MB)
2140  * causes us to preempt reaping up to hundreds of times per second. Using a
2141  * larger value (1GB) causes this to have virtually no effect.
2142  */
2143 size_t kmem_reap_preempt_bytes = 1024 * 1024;
2144 
2145 /*
2146  * Reap all magazines that have fallen out of the depot's working set.
2147  */
2148 static void
2149 kmem_depot_ws_reap(kmem_cache_t *cp)
2150 {
2151         size_t bytes = 0;
2152         long reap;
2153         kmem_magazine_t *mp;
2154 
2155         ASSERT(!list_link_active(&cp->cache_link) ||
2156             taskq_member(kmem_taskq, curthread));
2157 
2158         reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
2159         while (reap-- &&
2160             (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) {
2161                 kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
2162                 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2163                 if (bytes > kmem_reap_preempt_bytes) {
2164                         kpreempt(KPREEMPT_SYNC);
2165                         bytes = 0;
2166                 }
2167         }
2168 
2169         reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
2170         while (reap-- &&
2171             (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) {
2172                 kmem_magazine_destroy(cp, mp, 0);
2173                 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2174                 if (bytes > kmem_reap_preempt_bytes) {
2175                         kpreempt(KPREEMPT_SYNC);
2176                         bytes = 0;
2177                 }
2178         }
2179 }
2180 
2181 static void
2182 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds)
2183 {
2184         ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
2185             (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
2186         ASSERT(ccp->cc_magsize > 0);
2187 
2188         ccp->cc_ploaded = ccp->cc_loaded;
2189         ccp->cc_prounds = ccp->cc_rounds;
2190         ccp->cc_loaded = mp;
2191         ccp->cc_rounds = rounds;
2192 }
2193 
2194 /*
2195  * Intercept kmem alloc/free calls during crash dump in order to avoid
2196  * changing kmem state while memory is being saved to the dump device.
2197  * Otherwise, ::kmem_verify will report "corrupt buffers".  Note that
2198  * there are no locks because only one CPU calls kmem during a crash
2199  * dump. To enable this feature, first create the associated vmem
2200  * arena with VMC_DUMPSAFE.
2201  */
2202 static void *kmem_dump_start;   /* start of pre-reserved heap */
2203 static void *kmem_dump_end;     /* end of heap area */
2204 static void *kmem_dump_curr;    /* current free heap pointer */
2205 static size_t kmem_dump_size;   /* size of heap area */
2206 
2207 /* append to each buf created in the pre-reserved heap */
2208 typedef struct kmem_dumpctl {
2209         void    *kdc_next;      /* cache dump free list linkage */
2210 } kmem_dumpctl_t;
2211 
2212 #define KMEM_DUMPCTL(cp, buf)   \
2213         ((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \
2214             sizeof (void *)))
2215 
2216 /* set non zero for full report */
2217 uint_t kmem_dump_verbose = 0;
2218 
2219 /* stats for overize heap */
2220 uint_t kmem_dump_oversize_allocs = 0;
2221 uint_t kmem_dump_oversize_max = 0;
2222 
2223 static void
2224 kmem_dumppr(char **pp, char *e, const char *format, ...)
2225 {
2226         char *p = *pp;
2227 
2228         if (p < e) {
2229                 int n;
2230                 va_list ap;
2231 
2232                 va_start(ap, format);
2233                 n = vsnprintf(p, e - p, format, ap);
2234                 va_end(ap);
2235                 *pp = p + n;
2236         }
2237 }
2238 
2239 /*
2240  * Called when dumpadm(1M) configures dump parameters.
2241  */
2242 void
2243 kmem_dump_init(size_t size)
2244 {
2245         /* Our caller ensures size is always set. */
2246         ASSERT3U(size, >, 0);
2247 
2248         if (kmem_dump_start != NULL)
2249                 kmem_free(kmem_dump_start, kmem_dump_size);
2250 
2251         kmem_dump_start = kmem_alloc(size, KM_SLEEP);
2252         kmem_dump_size = size;
2253         kmem_dump_curr = kmem_dump_start;
2254         kmem_dump_end = (void *)((char *)kmem_dump_start + size);
2255         copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size);
2256 }
2257 
2258 /*
2259  * Set flag for each kmem_cache_t if is safe to use alternate dump
2260  * memory. Called just before panic crash dump starts. Set the flag
2261  * for the calling CPU.
2262  */
2263 void
2264 kmem_dump_begin(void)
2265 {
2266         kmem_cache_t *cp;
2267 
2268         ASSERT(panicstr != NULL);
2269 
2270         for (cp = list_head(&kmem_caches); cp != NULL;
2271             cp = list_next(&kmem_caches, cp)) {
2272                 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2273 
2274                 if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) {
2275                         cp->cache_flags |= KMF_DUMPDIVERT;
2276                         ccp->cc_flags |= KMF_DUMPDIVERT;
2277                         ccp->cc_dump_rounds = ccp->cc_rounds;
2278                         ccp->cc_dump_prounds = ccp->cc_prounds;
2279                         ccp->cc_rounds = ccp->cc_prounds = -1;
2280                 } else {
2281                         cp->cache_flags |= KMF_DUMPUNSAFE;
2282                         ccp->cc_flags |= KMF_DUMPUNSAFE;
2283                 }
2284         }
2285 }
2286 
2287 /*
2288  * finished dump intercept
2289  * print any warnings on the console
2290  * return verbose information to dumpsys() in the given buffer
2291  */
2292 size_t
2293 kmem_dump_finish(char *buf, size_t size)
2294 {
2295         int percent = 0;
2296         size_t used;
2297         char *e = buf + size;
2298         char *p = buf;
2299 
2300         if (kmem_dump_curr == kmem_dump_end) {
2301                 cmn_err(CE_WARN, "exceeded kmem_dump space of %lu "
2302                     "bytes: kmem state in dump may be inconsistent",
2303                     kmem_dump_size);
2304         }
2305 
2306         if (kmem_dump_verbose == 0)
2307                 return (0);
2308 
2309         used = (char *)kmem_dump_curr - (char *)kmem_dump_start;
2310         percent = (used * 100) / kmem_dump_size;
2311 
2312         kmem_dumppr(&p, e, "%% heap used,%d\n", percent);
2313         kmem_dumppr(&p, e, "used bytes,%ld\n", used);
2314         kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size);
2315         kmem_dumppr(&p, e, "Oversize allocs,%d\n",
2316             kmem_dump_oversize_allocs);
2317         kmem_dumppr(&p, e, "Oversize max size,%ld\n",
2318             kmem_dump_oversize_max);
2319 
2320         /* return buffer size used */
2321         if (p < e)
2322                 bzero(p, e - p);
2323         return (p - buf);
2324 }
2325 
2326 /*
2327  * Allocate a constructed object from alternate dump memory.
2328  */
2329 void *
2330 kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag)
2331 {
2332         void *buf;
2333         void *curr;
2334         char *bufend;
2335 
2336         /* return a constructed object */
2337         if ((buf = cp->cache_dump.kd_freelist) != NULL) {
2338                 cp->cache_dump.kd_freelist = KMEM_DUMPCTL(cp, buf)->kdc_next;
2339                 return (buf);
2340         }
2341 
2342         /* create a new constructed object */
2343         curr = kmem_dump_curr;
2344         buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align);
2345         bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t);
2346 
2347         /* hat layer objects cannot cross a page boundary */
2348         if (cp->cache_align < PAGESIZE) {
2349                 char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE);
2350                 if (bufend > page) {
2351                         bufend += page - (char *)buf;
2352                         buf = (void *)page;
2353                 }
2354         }
2355 
2356         /* fall back to normal alloc if reserved area is used up */
2357         if (bufend > (char *)kmem_dump_end) {
2358                 kmem_dump_curr = kmem_dump_end;
2359                 cp->cache_dump.kd_alloc_fails++;
2360                 return (NULL);
2361         }
2362 
2363         /*
2364          * Must advance curr pointer before calling a constructor that
2365          * may also allocate memory.
2366          */
2367         kmem_dump_curr = bufend;
2368 
2369         /* run constructor */
2370         if (cp->cache_constructor != NULL &&
2371             cp->cache_constructor(buf, cp->cache_private, kmflag)
2372             != 0) {
2373 #ifdef DEBUG
2374                 printf("name='%s' cache=0x%p: kmem cache constructor failed\n",
2375                     cp->cache_name, (void *)cp);
2376 #endif
2377                 /* reset curr pointer iff no allocs were done */
2378                 if (kmem_dump_curr == bufend)
2379                         kmem_dump_curr = curr;
2380 
2381                 cp->cache_dump.kd_alloc_fails++;
2382                 /* fall back to normal alloc if the constructor fails */
2383                 return (NULL);
2384         }
2385 
2386         return (buf);
2387 }
2388 
2389 /*
2390  * Free a constructed object in alternate dump memory.
2391  */
2392 int
2393 kmem_cache_free_dump(kmem_cache_t *cp, void *buf)
2394 {
2395         /* save constructed buffers for next time */
2396         if ((char *)buf >= (char *)kmem_dump_start &&
2397             (char *)buf < (char *)kmem_dump_end) {
2398                 KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dump.kd_freelist;
2399                 cp->cache_dump.kd_freelist = buf;
2400                 return (0);
2401         }
2402 
2403         /* just drop buffers that were allocated before dump started */
2404         if (kmem_dump_curr < kmem_dump_end)
2405                 return (0);
2406 
2407         /* fall back to normal free if reserved area is used up */
2408         return (1);
2409 }
2410 
2411 /*
2412  * Allocate a constructed object from cache cp.
2413  */
2414 void *
2415 kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
2416 {
2417         kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2418         kmem_magazine_t *fmp;
2419         void *buf;
2420 
2421         mutex_enter(&ccp->cc_lock);
2422         for (;;) {
2423                 /*
2424                  * If there's an object available in the current CPU's
2425                  * loaded magazine, just take it and return.
2426                  */
2427                 if (ccp->cc_rounds > 0) {
2428                         buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
2429                         ccp->cc_alloc++;
2430                         mutex_exit(&ccp->cc_lock);
2431                         if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) {
2432                                 if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2433                                         ASSERT(!(ccp->cc_flags &
2434                                             KMF_DUMPDIVERT));
2435                                         cp->cache_dump.kd_unsafe++;
2436                                 }
2437                                 if ((ccp->cc_flags & KMF_BUFTAG) &&
2438                                     kmem_cache_alloc_debug(cp, buf, kmflag, 0,
2439                                     caller()) != 0) {
2440                                         if (kmflag & KM_NOSLEEP)
2441                                                 return (NULL);
2442                                         mutex_enter(&ccp->cc_lock);
2443                                         continue;
2444                                 }
2445                         }
2446                         return (buf);
2447                 }
2448 
2449                 /*
2450                  * The loaded magazine is empty.  If the previously loaded
2451                  * magazine was full, exchange them and try again.
2452                  */
2453                 if (ccp->cc_prounds > 0) {
2454                         kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2455                         continue;
2456                 }
2457 
2458                 /*
2459                  * Return an alternate buffer at dump time to preserve
2460                  * the heap.
2461                  */
2462                 if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2463                         if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2464                                 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2465                                 /* log it so that we can warn about it */
2466                                 cp->cache_dump.kd_unsafe++;
2467                         } else {
2468                                 if ((buf = kmem_cache_alloc_dump(cp, kmflag)) !=
2469                                     NULL) {
2470                                         mutex_exit(&ccp->cc_lock);
2471                                         return (buf);
2472                                 }
2473                                 break;          /* fall back to slab layer */
2474                         }
2475                 }
2476 
2477                 /*
2478                  * If the magazine layer is disabled, break out now.
2479                  */
2480                 if (ccp->cc_magsize == 0)
2481                         break;
2482 
2483                 /*
2484                  * Try to get a full magazine from the depot.
2485                  */
2486                 fmp = kmem_depot_alloc(cp, &cp->cache_full);
2487                 if (fmp != NULL) {
2488                         if (ccp->cc_ploaded != NULL)
2489                                 kmem_depot_free(cp, &cp->cache_empty,
2490                                     ccp->cc_ploaded);
2491                         kmem_cpu_reload(ccp, fmp, ccp->cc_magsize);
2492                         continue;
2493                 }
2494 
2495                 /*
2496                  * There are no full magazines in the depot,
2497                  * so fall through to the slab layer.
2498                  */
2499                 break;
2500         }
2501         mutex_exit(&ccp->cc_lock);
2502 
2503         /*
2504          * We couldn't allocate a constructed object from the magazine layer,
2505          * so get a raw buffer from the slab layer and apply its constructor.
2506          */
2507         buf = kmem_slab_alloc(cp, kmflag);
2508 
2509         if (buf == NULL)
2510                 return (NULL);
2511 
2512         if (cp->cache_flags & KMF_BUFTAG) {
2513                 /*
2514                  * Make kmem_cache_alloc_debug() apply the constructor for us.
2515                  */
2516                 int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller());
2517                 if (rc != 0) {
2518                         if (kmflag & KM_NOSLEEP)
2519                                 return (NULL);
2520                         /*
2521                          * kmem_cache_alloc_debug() detected corruption
2522                          * but didn't panic (kmem_panic <= 0). We should not be
2523                          * here because the constructor failed (indicated by a
2524                          * return code of 1). Try again.
2525                          */
2526                         ASSERT(rc == -1);
2527                         return (kmem_cache_alloc(cp, kmflag));
2528                 }
2529                 return (buf);
2530         }
2531 
2532         if (cp->cache_constructor != NULL &&
2533             cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) {
2534                 atomic_inc_64(&cp->cache_alloc_fail);
2535                 kmem_slab_free(cp, buf);
2536                 return (NULL);
2537         }
2538 
2539         return (buf);
2540 }
2541 
2542 /*
2543  * The freed argument tells whether or not kmem_cache_free_debug() has already
2544  * been called so that we can avoid the duplicate free error. For example, a
2545  * buffer on a magazine has already been freed by the client but is still
2546  * constructed.
2547  */
2548 static void
2549 kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed)
2550 {
2551         if (!freed && (cp->cache_flags & KMF_BUFTAG))
2552                 if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2553                         return;
2554 
2555         /*
2556          * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not,
2557          * kmem_cache_free_debug() will have already applied the destructor.
2558          */
2559         if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF &&
2560             cp->cache_destructor != NULL) {
2561                 if (cp->cache_flags & KMF_DEADBEEF) {    /* KMF_LITE implied */
2562                         kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2563                         *(uint64_t *)buf = btp->bt_redzone;
2564                         cp->cache_destructor(buf, cp->cache_private);
2565                         *(uint64_t *)buf = KMEM_FREE_PATTERN;
2566                 } else {
2567                         cp->cache_destructor(buf, cp->cache_private);
2568                 }
2569         }
2570 
2571         kmem_slab_free(cp, buf);
2572 }
2573 
2574 /*
2575  * Used when there's no room to free a buffer to the per-CPU cache.
2576  * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the
2577  * caller should try freeing to the per-CPU cache again.
2578  * Note that we don't directly install the magazine in the cpu cache,
2579  * since its state may have changed wildly while the lock was dropped.
2580  */
2581 static int
2582 kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp)
2583 {
2584         kmem_magazine_t *emp;
2585         kmem_magtype_t *mtp;
2586 
2587         ASSERT(MUTEX_HELD(&ccp->cc_lock));
2588         ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize ||
2589             ((uint_t)ccp->cc_rounds == -1)) &&
2590             ((uint_t)ccp->cc_prounds == ccp->cc_magsize ||
2591             ((uint_t)ccp->cc_prounds == -1)));
2592 
2593         emp = kmem_depot_alloc(cp, &cp->cache_empty);
2594         if (emp != NULL) {
2595                 if (ccp->cc_ploaded != NULL)
2596                         kmem_depot_free(cp, &cp->cache_full,
2597                             ccp->cc_ploaded);
2598                 kmem_cpu_reload(ccp, emp, 0);
2599                 return (1);
2600         }
2601         /*
2602          * There are no empty magazines in the depot,
2603          * so try to allocate a new one.  We must drop all locks
2604          * across kmem_cache_alloc() because lower layers may
2605          * attempt to allocate from this cache.
2606          */
2607         mtp = cp->cache_magtype;
2608         mutex_exit(&ccp->cc_lock);
2609         emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP);
2610         mutex_enter(&ccp->cc_lock);
2611 
2612         if (emp != NULL) {
2613                 /*
2614                  * We successfully allocated an empty magazine.
2615                  * However, we had to drop ccp->cc_lock to do it,
2616                  * so the cache's magazine size may have changed.
2617                  * If so, free the magazine and try again.
2618                  */
2619                 if (ccp->cc_magsize != mtp->mt_magsize) {
2620                         mutex_exit(&ccp->cc_lock);
2621                         kmem_cache_free(mtp->mt_cache, emp);
2622                         mutex_enter(&ccp->cc_lock);
2623                         return (1);
2624                 }
2625 
2626                 /*
2627                  * We got a magazine of the right size.  Add it to
2628                  * the depot and try the whole dance again.
2629                  */
2630                 kmem_depot_free(cp, &cp->cache_empty, emp);
2631                 return (1);
2632         }
2633 
2634         /*
2635          * We couldn't allocate an empty magazine,
2636          * so fall through to the slab layer.
2637          */
2638         return (0);
2639 }
2640 
2641 /*
2642  * Free a constructed object to cache cp.
2643  */
2644 void
2645 kmem_cache_free(kmem_cache_t *cp, void *buf)
2646 {
2647         kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2648 
2649         /*
2650          * The client must not free either of the buffers passed to the move
2651          * callback function.
2652          */
2653         ASSERT(cp->cache_defrag == NULL ||
2654             cp->cache_defrag->kmd_thread != curthread ||
2655             (buf != cp->cache_defrag->kmd_from_buf &&
2656             buf != cp->cache_defrag->kmd_to_buf));
2657 
2658         if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2659                 if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2660                         ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2661                         /* log it so that we can warn about it */
2662                         cp->cache_dump.kd_unsafe++;
2663                 } else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) {
2664                         return;
2665                 }
2666                 if (ccp->cc_flags & KMF_BUFTAG) {
2667                         if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2668                                 return;
2669                 }
2670         }
2671 
2672         mutex_enter(&ccp->cc_lock);
2673         /*
2674          * Any changes to this logic should be reflected in kmem_slab_prefill()
2675          */
2676         for (;;) {
2677                 /*
2678                  * If there's a slot available in the current CPU's
2679                  * loaded magazine, just put the object there and return.
2680                  */
2681                 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2682                         ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
2683                         ccp->cc_free++;
2684                         mutex_exit(&ccp->cc_lock);
2685                         return;
2686                 }
2687 
2688                 /*
2689                  * The loaded magazine is full.  If the previously loaded
2690                  * magazine was empty, exchange them and try again.
2691                  */
2692                 if (ccp->cc_prounds == 0) {
2693                         kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2694                         continue;
2695                 }
2696 
2697                 /*
2698                  * If the magazine layer is disabled, break out now.
2699                  */
2700                 if (ccp->cc_magsize == 0)
2701                         break;
2702 
2703                 if (!kmem_cpucache_magazine_alloc(ccp, cp)) {
2704                         /*
2705                          * We couldn't free our constructed object to the
2706                          * magazine layer, so apply its destructor and free it
2707                          * to the slab layer.
2708                          */
2709                         break;
2710                 }
2711         }
2712         mutex_exit(&ccp->cc_lock);
2713         kmem_slab_free_constructed(cp, buf, B_TRUE);
2714 }
2715 
2716 static void
2717 kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp)
2718 {
2719         kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2720         int cache_flags = cp->cache_flags;
2721 
2722         kmem_bufctl_t *next, *head;
2723         size_t nbufs;
2724 
2725         /*
2726          * Completely allocate the newly created slab and put the pre-allocated
2727          * buffers in magazines. Any of the buffers that cannot be put in
2728          * magazines must be returned to the slab.
2729          */
2730         ASSERT(MUTEX_HELD(&cp->cache_lock));
2731         ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL);
2732         ASSERT(cp->cache_constructor == NULL);
2733         ASSERT(sp->slab_cache == cp);
2734         ASSERT(sp->slab_refcnt == 1);
2735         ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt);
2736         ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL);
2737 
2738         head = sp->slab_head;
2739         nbufs = (sp->slab_chunks - sp->slab_refcnt);
2740         sp->slab_head = NULL;
2741         sp->slab_refcnt += nbufs;
2742         cp->cache_bufslab -= nbufs;
2743         cp->cache_slab_alloc += nbufs;
2744         list_insert_head(&cp->cache_complete_slabs, sp);
2745         cp->cache_complete_slab_count++;
2746         mutex_exit(&cp->cache_lock);
2747         mutex_enter(&ccp->cc_lock);
2748 
2749         while (head != NULL) {
2750                 void *buf = KMEM_BUF(cp, head);
2751                 /*
2752                  * If there's a slot available in the current CPU's
2753                  * loaded magazine, just put the object there and
2754                  * continue.
2755                  */
2756                 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2757                         ccp->cc_loaded->mag_round[ccp->cc_rounds++] =
2758                             buf;
2759                         ccp->cc_free++;
2760                         nbufs--;
2761                         head = head->bc_next;
2762                         continue;
2763                 }
2764 
2765                 /*
2766                  * The loaded magazine is full.  If the previously
2767                  * loaded magazine was empty, exchange them and try
2768                  * again.
2769                  */
2770                 if (ccp->cc_prounds == 0) {
2771                         kmem_cpu_reload(ccp, ccp->cc_ploaded,
2772                             ccp->cc_prounds);
2773                         continue;
2774                 }
2775 
2776                 /*
2777                  * If the magazine layer is disabled, break out now.
2778                  */
2779 
2780                 if (ccp->cc_magsize == 0) {
2781                         break;
2782                 }
2783 
2784                 if (!kmem_cpucache_magazine_alloc(ccp, cp))
2785                         break;
2786         }
2787         mutex_exit(&ccp->cc_lock);
2788         if (nbufs != 0) {
2789                 ASSERT(head != NULL);
2790 
2791                 /*
2792                  * If there was a failure, return remaining objects to
2793                  * the slab
2794                  */
2795                 while (head != NULL) {
2796                         ASSERT(nbufs != 0);
2797                         next = head->bc_next;
2798                         head->bc_next = NULL;
2799                         kmem_slab_free(cp, KMEM_BUF(cp, head));
2800                         head = next;
2801                         nbufs--;
2802                 }
2803         }
2804         ASSERT(head == NULL);
2805         ASSERT(nbufs == 0);
2806         mutex_enter(&cp->cache_lock);
2807 }
2808 
2809 void *
2810 kmem_zalloc(size_t size, int kmflag)
2811 {
2812         size_t index;
2813         void *buf;
2814 
2815         if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2816                 kmem_cache_t *cp = kmem_alloc_table[index];
2817                 buf = kmem_cache_alloc(cp, kmflag);
2818                 if (buf != NULL) {
2819                         if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2820                                 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2821                                 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2822                                 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2823 
2824                                 if (cp->cache_flags & KMF_LITE) {
2825                                         KMEM_BUFTAG_LITE_ENTER(btp,
2826                                             kmem_lite_count, caller());
2827                                 }
2828                         }
2829                         bzero(buf, size);
2830                 }
2831         } else {
2832                 buf = kmem_alloc(size, kmflag);
2833                 if (buf != NULL)
2834                         bzero(buf, size);
2835         }
2836         return (buf);
2837 }
2838 
2839 void *
2840 kmem_alloc(size_t size, int kmflag)
2841 {
2842         size_t index;
2843         kmem_cache_t *cp;
2844         void *buf;
2845 
2846         if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2847                 cp = kmem_alloc_table[index];
2848                 /* fall through to kmem_cache_alloc() */
2849 
2850         } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2851             kmem_big_alloc_table_max) {
2852                 cp = kmem_big_alloc_table[index];
2853                 /* fall through to kmem_cache_alloc() */
2854 
2855         } else {
2856                 if (size == 0)
2857                         return (NULL);
2858 
2859                 buf = vmem_alloc(kmem_oversize_arena, size,
2860                     kmflag & KM_VMFLAGS);
2861                 if (buf == NULL)
2862                         kmem_log_event(kmem_failure_log, NULL, NULL,
2863                             (void *)size);
2864                 else if (KMEM_DUMP(kmem_slab_cache)) {
2865                         /* stats for dump intercept */
2866                         kmem_dump_oversize_allocs++;
2867                         if (size > kmem_dump_oversize_max)
2868                                 kmem_dump_oversize_max = size;
2869                 }
2870                 return (buf);
2871         }
2872 
2873         buf = kmem_cache_alloc(cp, kmflag);
2874         if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) {
2875                 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2876                 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2877                 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2878 
2879                 if (cp->cache_flags & KMF_LITE) {
2880                         KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller());
2881                 }
2882         }
2883         return (buf);
2884 }
2885 
2886 void
2887 kmem_free(void *buf, size_t size)
2888 {
2889         size_t index;
2890         kmem_cache_t *cp;
2891 
2892         if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) {
2893                 cp = kmem_alloc_table[index];
2894                 /* fall through to kmem_cache_free() */
2895 
2896         } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2897             kmem_big_alloc_table_max) {
2898                 cp = kmem_big_alloc_table[index];
2899                 /* fall through to kmem_cache_free() */
2900 
2901         } else {
2902                 EQUIV(buf == NULL, size == 0);
2903                 if (buf == NULL && size == 0)
2904                         return;
2905                 vmem_free(kmem_oversize_arena, buf, size);
2906                 return;
2907         }
2908 
2909         if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2910                 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2911                 uint32_t *ip = (uint32_t *)btp;
2912                 if (ip[1] != KMEM_SIZE_ENCODE(size)) {
2913                         if (*(uint64_t *)buf == KMEM_FREE_PATTERN) {
2914                                 kmem_error(KMERR_DUPFREE, cp, buf);
2915                                 return;
2916                         }
2917                         if (KMEM_SIZE_VALID(ip[1])) {
2918                                 ip[0] = KMEM_SIZE_ENCODE(size);
2919                                 kmem_error(KMERR_BADSIZE, cp, buf);
2920                         } else {
2921                                 kmem_error(KMERR_REDZONE, cp, buf);
2922                         }
2923                         return;
2924                 }
2925                 if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) {
2926                         kmem_error(KMERR_REDZONE, cp, buf);
2927                         return;
2928                 }
2929                 btp->bt_redzone = KMEM_REDZONE_PATTERN;
2930                 if (cp->cache_flags & KMF_LITE) {
2931                         KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
2932                             caller());
2933                 }
2934         }
2935         kmem_cache_free(cp, buf);
2936 }
2937 
2938 void *
2939 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
2940 {
2941         size_t realsize = size + vmp->vm_quantum;
2942         void *addr;
2943 
2944         /*
2945          * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
2946          * vm_quantum will cause integer wraparound.  Check for this, and
2947          * blow off the firewall page in this case.  Note that such a
2948          * giant allocation (the entire kernel address space) can never
2949          * be satisfied, so it will either fail immediately (VM_NOSLEEP)
2950          * or sleep forever (VM_SLEEP).  Thus, there is no need for a
2951          * corresponding check in kmem_firewall_va_free().
2952          */
2953         if (realsize < size)
2954                 realsize = size;
2955 
2956         /*
2957          * While boot still owns resource management, make sure that this
2958          * redzone virtual address allocation is properly accounted for in
2959          * OBPs "virtual-memory" "available" lists because we're
2960          * effectively claiming them for a red zone.  If we don't do this,
2961          * the available lists become too fragmented and too large for the
2962          * current boot/kernel memory list interface.
2963          */
2964         addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT);
2965 
2966         if (addr != NULL && kvseg.s_base == NULL && realsize != size)
2967                 (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum);
2968 
2969         return (addr);
2970 }
2971 
2972 void
2973 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
2974 {
2975         ASSERT((kvseg.s_base == NULL ?
2976             va_to_pfn((char *)addr + size) :
2977             hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID);
2978 
2979         vmem_free(vmp, addr, size + vmp->vm_quantum);
2980 }
2981 
2982 /*
2983  * Try to allocate at least `size' bytes of memory without sleeping or
2984  * panicking. Return actual allocated size in `asize'. If allocation failed,
2985  * try final allocation with sleep or panic allowed.
2986  */
2987 void *
2988 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag)
2989 {
2990         void *p;
2991 
2992         *asize = P2ROUNDUP(size, KMEM_ALIGN);
2993         do {
2994                 p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC);
2995                 if (p != NULL)
2996                         return (p);
2997                 *asize += KMEM_ALIGN;
2998         } while (*asize <= PAGESIZE);
2999 
3000         *asize = P2ROUNDUP(size, KMEM_ALIGN);
3001         return (kmem_alloc(*asize, kmflag));
3002 }
3003 
3004 /*
3005  * Reclaim all unused memory from a cache.
3006  */
3007 static void
3008 kmem_cache_reap(kmem_cache_t *cp)
3009 {
3010         ASSERT(taskq_member(kmem_taskq, curthread));
3011         cp->cache_reap++;
3012 
3013         /*
3014          * Ask the cache's owner to free some memory if possible.
3015          * The idea is to handle things like the inode cache, which
3016          * typically sits on a bunch of memory that it doesn't truly
3017          * *need*.  Reclaim policy is entirely up to the owner; this
3018          * callback is just an advisory plea for help.
3019          */
3020         if (cp->cache_reclaim != NULL) {
3021                 long delta;
3022 
3023                 /*
3024                  * Reclaimed memory should be reapable (not included in the
3025                  * depot's working set).
3026                  */
3027                 delta = cp->cache_full.ml_total;
3028                 cp->cache_reclaim(cp->cache_private);
3029                 delta = cp->cache_full.ml_total - delta;
3030                 if (delta > 0) {
3031                         mutex_enter(&cp->cache_depot_lock);
3032                         cp->cache_full.ml_reaplimit += delta;
3033                         cp->cache_full.ml_min += delta;
3034                         mutex_exit(&cp->cache_depot_lock);
3035                 }
3036         }
3037 
3038         kmem_depot_ws_reap(cp);
3039 
3040         if (cp->cache_defrag != NULL && !kmem_move_noreap) {
3041                 kmem_cache_defrag(cp);
3042         }
3043 }
3044 
3045 static void
3046 kmem_reap_timeout(void *flag_arg)
3047 {
3048         uint32_t *flag = (uint32_t *)flag_arg;
3049 
3050         ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3051         *flag = 0;
3052 }
3053 
3054 static void
3055 kmem_reap_done(void *flag)
3056 {
3057         if (!callout_init_done) {
3058                 /* can't schedule a timeout at this point */
3059                 kmem_reap_timeout(flag);
3060         } else {
3061                 (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval);
3062         }
3063 }
3064 
3065 static void
3066 kmem_reap_start(void *flag)
3067 {
3068         ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3069 
3070         if (flag == &kmem_reaping) {
3071                 kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3072                 /*
3073                  * if we have segkp under heap, reap segkp cache.
3074                  */
3075                 if (segkp_fromheap)
3076                         segkp_cache_free();
3077         }
3078         else
3079                 kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3080 
3081         /*
3082          * We use taskq_dispatch() to schedule a timeout to clear
3083          * the flag so that kmem_reap() becomes self-throttling:
3084          * we won't reap again until the current reap completes *and*
3085          * at least kmem_reap_interval ticks have elapsed.
3086          */
3087         if (taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP) ==
3088             TASKQID_INVALID)
3089                 kmem_reap_done(flag);
3090 }
3091 
3092 static void
3093 kmem_reap_common(void *flag_arg)
3094 {
3095         uint32_t *flag = (uint32_t *)flag_arg;
3096 
3097         if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL ||
3098             atomic_cas_32(flag, 0, 1) != 0)
3099                 return;
3100 
3101         /*
3102          * It may not be kosher to do memory allocation when a reap is called
3103          * (for example, if vmem_populate() is in the call chain).  So we
3104          * start the reap going with a TQ_NOALLOC dispatch.  If the dispatch
3105          * fails, we reset the flag, and the next reap will try again.
3106          */
3107         if (taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC) ==
3108             TASKQID_INVALID)
3109                 *flag = 0;
3110 }
3111 
3112 /*
3113  * Reclaim all unused memory from all caches.  Called from the VM system
3114  * when memory gets tight.
3115  */
3116 void
3117 kmem_reap(void)
3118 {
3119         kmem_reap_common(&kmem_reaping);
3120 }
3121 
3122 /*
3123  * Reclaim all unused memory from identifier arenas, called when a vmem
3124  * arena not back by memory is exhausted.  Since reaping memory-backed caches
3125  * cannot help with identifier exhaustion, we avoid both a large amount of
3126  * work and unwanted side-effects from reclaim callbacks.
3127  */
3128 void
3129 kmem_reap_idspace(void)
3130 {
3131         kmem_reap_common(&kmem_reaping_idspace);
3132 }
3133 
3134 /*
3135  * Purge all magazines from a cache and set its magazine limit to zero.
3136  * All calls are serialized by the kmem_taskq lock, except for the final
3137  * call from kmem_cache_destroy().
3138  */
3139 static void
3140 kmem_cache_magazine_purge(kmem_cache_t *cp)
3141 {
3142         kmem_cpu_cache_t *ccp;
3143         kmem_magazine_t *mp, *pmp;
3144         int rounds, prounds, cpu_seqid;
3145 
3146         ASSERT(!list_link_active(&cp->cache_link) ||
3147             taskq_member(kmem_taskq, curthread));
3148         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
3149 
3150         for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3151                 ccp = &cp->cache_cpu[cpu_seqid];
3152 
3153                 mutex_enter(&ccp->cc_lock);
3154                 mp = ccp->cc_loaded;
3155                 pmp = ccp->cc_ploaded;
3156                 rounds = ccp->cc_rounds;
3157                 prounds = ccp->cc_prounds;
3158                 ccp->cc_loaded = NULL;
3159                 ccp->cc_ploaded = NULL;
3160                 ccp->cc_rounds = -1;
3161                 ccp->cc_prounds = -1;
3162                 ccp->cc_magsize = 0;
3163                 mutex_exit(&ccp->cc_lock);
3164 
3165                 if (mp)
3166                         kmem_magazine_destroy(cp, mp, rounds);
3167                 if (pmp)
3168                         kmem_magazine_destroy(cp, pmp, prounds);
3169         }
3170 
3171         kmem_depot_ws_zero(cp);
3172         kmem_depot_ws_reap(cp);
3173 }
3174 
3175 /*
3176  * Enable per-cpu magazines on a cache.
3177  */
3178 static void
3179 kmem_cache_magazine_enable(kmem_cache_t *cp)
3180 {
3181         int cpu_seqid;
3182 
3183         if (cp->cache_flags & KMF_NOMAGAZINE)
3184                 return;
3185 
3186         for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3187                 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3188                 mutex_enter(&ccp->cc_lock);
3189                 ccp->cc_magsize = cp->cache_magtype->mt_magsize;
3190                 mutex_exit(&ccp->cc_lock);
3191         }
3192 
3193 }
3194 
3195 /*
3196  * Allow our caller to determine if there are running reaps.
3197  *
3198  * This call is very conservative and may return B_TRUE even when
3199  * reaping activity isn't active. If it returns B_FALSE, then reaping
3200  * activity is definitely inactive.
3201  */
3202 boolean_t
3203 kmem_cache_reap_active(void)
3204 {
3205         return (!taskq_empty(kmem_taskq));
3206 }
3207 
3208 /*
3209  * Reap (almost) everything soon.
3210  *
3211  * Note: this does not wait for the reap-tasks to complete. Caller
3212  * should use kmem_cache_reap_active() (above) and/or moderation to
3213  * avoid scheduling too many reap-tasks.
3214  */
3215 void
3216 kmem_cache_reap_soon(kmem_cache_t *cp)
3217 {
3218         ASSERT(list_link_active(&cp->cache_link));
3219 
3220         kmem_depot_ws_zero(cp);
3221 
3222         (void) taskq_dispatch(kmem_taskq,
3223             (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP);
3224 }
3225 
3226 /*
3227  * Recompute a cache's magazine size.  The trade-off is that larger magazines
3228  * provide a higher transfer rate with the depot, while smaller magazines
3229  * reduce memory consumption.  Magazine resizing is an expensive operation;
3230  * it should not be done frequently.
3231  *
3232  * Changes to the magazine size are serialized by the kmem_taskq lock.
3233  *
3234  * Note: at present this only grows the magazine size.  It might be useful
3235  * to allow shrinkage too.
3236  */
3237 static void
3238 kmem_cache_magazine_resize(kmem_cache_t *cp)
3239 {
3240         kmem_magtype_t *mtp = cp->cache_magtype;
3241 
3242         ASSERT(taskq_member(kmem_taskq, curthread));
3243 
3244         if (cp->cache_chunksize < mtp->mt_maxbuf) {
3245                 kmem_cache_magazine_purge(cp);
3246                 mutex_enter(&cp->cache_depot_lock);
3247                 cp->cache_magtype = ++mtp;
3248                 cp->cache_depot_contention_prev =
3249                     cp->cache_depot_contention + INT_MAX;
3250                 mutex_exit(&cp->cache_depot_lock);
3251                 kmem_cache_magazine_enable(cp);
3252         }
3253 }
3254 
3255 /*
3256  * Rescale a cache's hash table, so that the table size is roughly the
3257  * cache size.  We want the average lookup time to be extremely small.
3258  */
3259 static void
3260 kmem_hash_rescale(kmem_cache_t *cp)
3261 {
3262         kmem_bufctl_t **old_table, **new_table, *bcp;
3263         size_t old_size, new_size, h;
3264 
3265         ASSERT(taskq_member(kmem_taskq, curthread));
3266 
3267         new_size = MAX(KMEM_HASH_INITIAL,
3268             1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
3269         old_size = cp->cache_hash_mask + 1;
3270 
3271         if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
3272                 return;
3273 
3274         new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *),
3275             VM_NOSLEEP);
3276         if (new_table == NULL)
3277                 return;
3278         bzero(new_table, new_size * sizeof (void *));
3279 
3280         mutex_enter(&cp->cache_lock);
3281 
3282         old_size = cp->cache_hash_mask + 1;
3283         old_table = cp->cache_hash_table;
3284 
3285         cp->cache_hash_mask = new_size - 1;
3286         cp->cache_hash_table = new_table;
3287         cp->cache_rescale++;
3288 
3289         for (h = 0; h < old_size; h++) {
3290                 bcp = old_table[h];
3291                 while (bcp != NULL) {
3292                         void *addr = bcp->bc_addr;
3293                         kmem_bufctl_t *next_bcp = bcp->bc_next;
3294                         kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr);
3295                         bcp->bc_next = *hash_bucket;
3296                         *hash_bucket = bcp;
3297                         bcp = next_bcp;
3298                 }
3299         }
3300 
3301         mutex_exit(&cp->cache_lock);
3302 
3303         vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *));
3304 }
3305 
3306 /*
3307  * Perform periodic maintenance on a cache: hash rescaling, depot working-set
3308  * update, magazine resizing, and slab consolidation.
3309  */
3310 static void
3311 kmem_cache_update(kmem_cache_t *cp)
3312 {
3313         int need_hash_rescale = 0;
3314         int need_magazine_resize = 0;
3315 
3316         ASSERT(MUTEX_HELD(&kmem_cache_lock));
3317 
3318         /*
3319          * If the cache has become much larger or smaller than its hash table,
3320          * fire off a request to rescale the hash table.
3321          */
3322         mutex_enter(&cp->cache_lock);
3323 
3324         if ((cp->cache_flags & KMF_HASH) &&
3325             (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
3326             (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
3327             cp->cache_hash_mask > KMEM_HASH_INITIAL)))
3328                 need_hash_rescale = 1;
3329 
3330         mutex_exit(&cp->cache_lock);
3331 
3332         /*
3333          * Update the depot working set statistics.
3334          */
3335         kmem_depot_ws_update(cp);
3336 
3337         /*
3338          * If there's a lot of contention in the depot,
3339          * increase the magazine size.
3340          */
3341         mutex_enter(&cp->cache_depot_lock);
3342 
3343         if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
3344             (int)(cp->cache_depot_contention -
3345             cp->cache_depot_contention_prev) > kmem_depot_contention)
3346                 need_magazine_resize = 1;
3347 
3348         cp->cache_depot_contention_prev = cp->cache_depot_contention;
3349 
3350         mutex_exit(&cp->cache_depot_lock);
3351 
3352         if (need_hash_rescale)
3353                 (void) taskq_dispatch(kmem_taskq,
3354                     (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP);
3355 
3356         if (need_magazine_resize)
3357                 (void) taskq_dispatch(kmem_taskq,
3358                     (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP);
3359 
3360         if (cp->cache_defrag != NULL)
3361                 (void) taskq_dispatch(kmem_taskq,
3362                     (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP);
3363 }
3364 
3365 static void kmem_update(void *);
3366 
3367 static void
3368 kmem_update_timeout(void *dummy)
3369 {
3370         (void) timeout(kmem_update, dummy, kmem_reap_interval);
3371 }
3372 
3373 static void
3374 kmem_update(void *dummy)
3375 {
3376         kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP);
3377 
3378         /*
3379          * We use taskq_dispatch() to reschedule the timeout so that
3380          * kmem_update() becomes self-throttling: it won't schedule
3381          * new tasks until all previous tasks have completed.
3382          */
3383         if (taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP)
3384             == TASKQID_INVALID)
3385                 kmem_update_timeout(NULL);
3386 }
3387 
3388 static int
3389 kmem_cache_kstat_update(kstat_t *ksp, int rw)
3390 {
3391         struct kmem_cache_kstat *kmcp = &kmem_cache_kstat;
3392         kmem_cache_t *cp = ksp->ks_private;
3393         uint64_t cpu_buf_avail;
3394         uint64_t buf_avail = 0;
3395         int cpu_seqid;
3396         long reap;
3397 
3398         ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock));
3399 
3400         if (rw == KSTAT_WRITE)
3401                 return (EACCES);
3402 
3403         mutex_enter(&cp->cache_lock);
3404 
3405         kmcp->kmc_alloc_fail.value.ui64              = cp->cache_alloc_fail;
3406         kmcp->kmc_alloc.value.ui64           = cp->cache_slab_alloc;
3407         kmcp->kmc_free.value.ui64            = cp->cache_slab_free;
3408         kmcp->kmc_slab_alloc.value.ui64              = cp->cache_slab_alloc;
3409         kmcp->kmc_slab_free.value.ui64               = cp->cache_slab_free;
3410 
3411         for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3412                 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3413 
3414                 mutex_enter(&ccp->cc_lock);
3415 
3416                 cpu_buf_avail = 0;
3417                 if (ccp->cc_rounds > 0)
3418                         cpu_buf_avail += ccp->cc_rounds;
3419                 if (ccp->cc_prounds > 0)
3420                         cpu_buf_avail += ccp->cc_prounds;
3421 
3422                 kmcp->kmc_alloc.value.ui64   += ccp->cc_alloc;
3423                 kmcp->kmc_free.value.ui64    += ccp->cc_free;
3424                 buf_avail                       += cpu_buf_avail;
3425 
3426                 mutex_exit(&ccp->cc_lock);
3427         }
3428 
3429         mutex_enter(&cp->cache_depot_lock);
3430 
3431         kmcp->kmc_depot_alloc.value.ui64     = cp->cache_full.ml_alloc;
3432         kmcp->kmc_depot_free.value.ui64              = cp->cache_empty.ml_alloc;
3433         kmcp->kmc_depot_contention.value.ui64        = cp->cache_depot_contention;
3434         kmcp->kmc_full_magazines.value.ui64  = cp->cache_full.ml_total;
3435         kmcp->kmc_empty_magazines.value.ui64 = cp->cache_empty.ml_total;
3436         kmcp->kmc_magazine_size.value.ui64   =
3437             (cp->cache_flags & KMF_NOMAGAZINE) ?
3438             0 : cp->cache_magtype->mt_magsize;
3439 
3440         kmcp->kmc_alloc.value.ui64           += cp->cache_full.ml_alloc;
3441         kmcp->kmc_free.value.ui64            += cp->cache_empty.ml_alloc;
3442         buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize;
3443 
3444         reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
3445         reap = MIN(reap, cp->cache_full.ml_total);
3446 
3447         mutex_exit(&cp->cache_depot_lock);
3448 
3449         kmcp->kmc_buf_size.value.ui64        = cp->cache_bufsize;
3450         kmcp->kmc_align.value.ui64   = cp->cache_align;
3451         kmcp->kmc_chunk_size.value.ui64      = cp->cache_chunksize;
3452         kmcp->kmc_slab_size.value.ui64       = cp->cache_slabsize;
3453         kmcp->kmc_buf_constructed.value.ui64 = buf_avail;
3454         buf_avail += cp->cache_bufslab;
3455         kmcp->kmc_buf_avail.value.ui64       = buf_avail;
3456         kmcp->kmc_buf_inuse.value.ui64       = cp->cache_buftotal - buf_avail;
3457         kmcp->kmc_buf_total.value.ui64       = cp->cache_buftotal;
3458         kmcp->kmc_buf_max.value.ui64 = cp->cache_bufmax;
3459         kmcp->kmc_slab_create.value.ui64     = cp->cache_slab_create;
3460         kmcp->kmc_slab_destroy.value.ui64    = cp->cache_slab_destroy;
3461         kmcp->kmc_hash_size.value.ui64       = (cp->cache_flags & KMF_HASH) ?
3462             cp->cache_hash_mask + 1 : 0;
3463         kmcp->kmc_hash_lookup_depth.value.ui64       = cp->cache_lookup_depth;
3464         kmcp->kmc_hash_rescale.value.ui64    = cp->cache_rescale;
3465         kmcp->kmc_vmem_source.value.ui64     = cp->cache_arena->vm_id;
3466         kmcp->kmc_reap.value.ui64    = cp->cache_reap;
3467 
3468         if (cp->cache_defrag == NULL) {
3469                 kmcp->kmc_move_callbacks.value.ui64  = 0;
3470                 kmcp->kmc_move_yes.value.ui64                = 0;
3471                 kmcp->kmc_move_no.value.ui64         = 0;
3472                 kmcp->kmc_move_later.value.ui64              = 0;
3473                 kmcp->kmc_move_dont_need.value.ui64  = 0;
3474                 kmcp->kmc_move_dont_know.value.ui64  = 0;
3475                 kmcp->kmc_move_hunt_found.value.ui64 = 0;
3476                 kmcp->kmc_move_slabs_freed.value.ui64        = 0;
3477                 kmcp->kmc_defrag.value.ui64          = 0;
3478                 kmcp->kmc_scan.value.ui64            = 0;
3479                 kmcp->kmc_move_reclaimable.value.ui64        = 0;
3480         } else {
3481                 int64_t reclaimable;
3482 
3483                 kmem_defrag_t *kd = cp->cache_defrag;
3484                 kmcp->kmc_move_callbacks.value.ui64  = kd->kmd_callbacks;
3485                 kmcp->kmc_move_yes.value.ui64                = kd->kmd_yes;
3486                 kmcp->kmc_move_no.value.ui64         = kd->kmd_no;
3487                 kmcp->kmc_move_later.value.ui64              = kd->kmd_later;
3488                 kmcp->kmc_move_dont_need.value.ui64  = kd->kmd_dont_need;
3489                 kmcp->kmc_move_dont_know.value.ui64  = kd->kmd_dont_know;
3490                 kmcp->kmc_move_hunt_found.value.ui64 = 0;
3491                 kmcp->kmc_move_slabs_freed.value.ui64        = kd->kmd_slabs_freed;
3492                 kmcp->kmc_defrag.value.ui64          = kd->kmd_defrags;
3493                 kmcp->kmc_scan.value.ui64            = kd->kmd_scans;
3494 
3495                 reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1);
3496                 reclaimable = MAX(reclaimable, 0);
3497                 reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
3498                 kmcp->kmc_move_reclaimable.value.ui64        = reclaimable;
3499         }
3500 
3501         mutex_exit(&cp->cache_lock);
3502         return (0);
3503 }
3504 
3505 /*
3506  * Return a named statistic about a particular cache.
3507  * This shouldn't be called very often, so it's currently designed for
3508  * simplicity (leverages existing kstat support) rather than efficiency.
3509  */
3510 uint64_t
3511 kmem_cache_stat(kmem_cache_t *cp, char *name)
3512 {
3513         int i;
3514         kstat_t *ksp = cp->cache_kstat;
3515         kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat;
3516         uint64_t value = 0;
3517 
3518         if (ksp != NULL) {
3519                 mutex_enter(&kmem_cache_kstat_lock);
3520                 (void) kmem_cache_kstat_update(ksp, KSTAT_READ);
3521                 for (i = 0; i < ksp->ks_ndata; i++) {
3522                         if (strcmp(knp[i].name, name) == 0) {
3523                                 value = knp[i].value.ui64;
3524                                 break;
3525                         }
3526                 }
3527                 mutex_exit(&kmem_cache_kstat_lock);
3528         }
3529         return (value);
3530 }
3531 
3532 /*
3533  * Return an estimate of currently available kernel heap memory.
3534  * On 32-bit systems, physical memory may exceed virtual memory,
3535  * we just truncate the result at 1GB.
3536  */
3537 size_t
3538 kmem_avail(void)
3539 {
3540         spgcnt_t rmem = availrmem - tune.t_minarmem;
3541         spgcnt_t fmem = freemem - minfree;
3542 
3543         return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0),
3544             1 << (30 - PAGESHIFT))));
3545 }
3546 
3547 /*
3548  * Return the maximum amount of memory that is (in theory) allocatable
3549  * from the heap. This may be used as an estimate only since there
3550  * is no guarentee this space will still be available when an allocation
3551  * request is made, nor that the space may be allocated in one big request
3552  * due to kernel heap fragmentation.
3553  */
3554 size_t
3555 kmem_maxavail(void)
3556 {
3557         spgcnt_t pmem = availrmem - tune.t_minarmem;
3558         spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE));
3559 
3560         return ((size_t)ptob(MAX(MIN(pmem, vmem), 0)));
3561 }
3562 
3563 /*
3564  * Indicate whether memory-intensive kmem debugging is enabled.
3565  */
3566 int
3567 kmem_debugging(void)
3568 {
3569         return (kmem_flags & (KMF_AUDIT | KMF_REDZONE));
3570 }
3571 
3572 /* binning function, sorts finely at the two extremes */
3573 #define KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift)                          \
3574         ((((sp)->slab_refcnt <= (binshift)) ||                            \
3575             (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift)))   \
3576             ? -(sp)->slab_refcnt                                     \
3577             : -((binshift) + ((sp)->slab_refcnt >> (binshift))))
3578 
3579 /*
3580  * Minimizing the number of partial slabs on the freelist minimizes
3581  * fragmentation (the ratio of unused buffers held by the slab layer). There are
3582  * two ways to get a slab off of the freelist: 1) free all the buffers on the
3583  * slab, and 2) allocate all the buffers on the slab. It follows that we want
3584  * the most-used slabs at the front of the list where they have the best chance
3585  * of being completely allocated, and the least-used slabs at a safe distance
3586  * from the front to improve the odds that the few remaining buffers will all be
3587  * freed before another allocation can tie up the slab. For that reason a slab
3588  * with a higher slab_refcnt sorts less than than a slab with a lower
3589  * slab_refcnt.
3590  *
3591  * However, if a slab has at least one buffer that is deemed unfreeable, we
3592  * would rather have that slab at the front of the list regardless of
3593  * slab_refcnt, since even one unfreeable buffer makes the entire slab
3594  * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move()
3595  * callback, the slab is marked unfreeable for as long as it remains on the
3596  * freelist.
3597  */
3598 static int
3599 kmem_partial_slab_cmp(const void *p0, const void *p1)
3600 {
3601         const kmem_cache_t *cp;
3602         const kmem_slab_t *s0 = p0;
3603         const kmem_slab_t *s1 = p1;
3604         int w0, w1;
3605         size_t binshift;
3606 
3607         ASSERT(KMEM_SLAB_IS_PARTIAL(s0));
3608         ASSERT(KMEM_SLAB_IS_PARTIAL(s1));
3609         ASSERT(s0->slab_cache == s1->slab_cache);
3610         cp = s1->slab_cache;
3611         ASSERT(MUTEX_HELD(&cp->cache_lock));
3612         binshift = cp->cache_partial_binshift;
3613 
3614         /* weight of first slab */
3615         w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift);
3616         if (s0->slab_flags & KMEM_SLAB_NOMOVE) {
3617                 w0 -= cp->cache_maxchunks;
3618         }
3619 
3620         /* weight of second slab */
3621         w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift);
3622         if (s1->slab_flags & KMEM_SLAB_NOMOVE) {
3623                 w1 -= cp->cache_maxchunks;
3624         }
3625 
3626         if (w0 < w1)
3627                 return (-1);
3628         if (w0 > w1)
3629                 return (1);
3630 
3631         /* compare pointer values */
3632         if ((uintptr_t)s0 < (uintptr_t)s1)
3633                 return (-1);
3634         if ((uintptr_t)s0 > (uintptr_t)s1)
3635                 return (1);
3636 
3637         return (0);
3638 }
3639 
3640 /*
3641  * It must be valid to call the destructor (if any) on a newly created object.
3642  * That is, the constructor (if any) must leave the object in a valid state for
3643  * the destructor.
3644  */
3645 kmem_cache_t *
3646 kmem_cache_create(
3647         char *name,             /* descriptive name for this cache */
3648         size_t bufsize,         /* size of the objects it manages */
3649         size_t align,           /* required object alignment */
3650         int (*constructor)(void *, void *, int), /* object constructor */
3651         void (*destructor)(void *, void *),     /* object destructor */
3652         void (*reclaim)(void *), /* memory reclaim callback */
3653         void *private,          /* pass-thru arg for constr/destr/reclaim */
3654         vmem_t *vmp,            /* vmem source for slab allocation */
3655         int cflags)             /* cache creation flags */
3656 {
3657         int cpu_seqid;
3658         size_t chunksize;
3659         kmem_cache_t *cp;
3660         kmem_magtype_t *mtp;
3661         size_t csize = KMEM_CACHE_SIZE(max_ncpus);
3662 
3663 #ifdef  DEBUG
3664         /*
3665          * Cache names should conform to the rules for valid C identifiers
3666          */
3667         if (!strident_valid(name)) {
3668                 cmn_err(CE_CONT,
3669                     "kmem_cache_create: '%s' is an invalid cache name\n"
3670                     "cache names must conform to the rules for "
3671                     "C identifiers\n", name);
3672         }
3673 #endif  /* DEBUG */
3674 
3675         if (vmp == NULL)
3676                 vmp = kmem_default_arena;
3677 
3678         /*
3679          * If this kmem cache has an identifier vmem arena as its source, mark
3680          * it such to allow kmem_reap_idspace().
3681          */
3682         ASSERT(!(cflags & KMC_IDENTIFIER));   /* consumer should not set this */
3683         if (vmp->vm_cflags & VMC_IDENTIFIER)
3684                 cflags |= KMC_IDENTIFIER;
3685 
3686         /*
3687          * Get a kmem_cache structure.  We arrange that cp->cache_cpu[]
3688          * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent
3689          * false sharing of per-CPU data.
3690          */
3691         cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE,
3692             P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP);
3693         bzero(cp, csize);
3694         list_link_init(&cp->cache_link);
3695 
3696         if (align == 0)
3697                 align = KMEM_ALIGN;
3698 
3699         /*
3700          * If we're not at least KMEM_ALIGN aligned, we can't use free
3701          * memory to hold bufctl information (because we can't safely
3702          * perform word loads and stores on it).
3703          */
3704         if (align < KMEM_ALIGN)
3705                 cflags |= KMC_NOTOUCH;
3706 
3707         if (!ISP2(align) || align > vmp->vm_quantum)
3708                 panic("kmem_cache_create: bad alignment %lu", align);
3709 
3710         mutex_enter(&kmem_flags_lock);
3711         if (kmem_flags & KMF_RANDOMIZE)
3712                 kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) |
3713                     KMF_RANDOMIZE;
3714         cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG;
3715         mutex_exit(&kmem_flags_lock);
3716 
3717         /*
3718          * Make sure all the various flags are reasonable.
3719          */
3720         ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH));
3721 
3722         if (cp->cache_flags & KMF_LITE) {
3723                 if (bufsize >= kmem_lite_minsize &&
3724                     align <= kmem_lite_maxalign &&
3725                     P2PHASE(bufsize, kmem_lite_maxalign) != 0) {
3726                         cp->cache_flags |= KMF_BUFTAG;
3727                         cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3728                 } else {
3729                         cp->cache_flags &= ~KMF_DEBUG;
3730                 }
3731         }
3732 
3733         if (cp->cache_flags & KMF_DEADBEEF)
3734                 cp->cache_flags |= KMF_REDZONE;
3735 
3736         if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT))
3737                 cp->cache_flags |= KMF_NOMAGAZINE;
3738 
3739         if (cflags & KMC_NODEBUG)
3740                 cp->cache_flags &= ~KMF_DEBUG;
3741 
3742         if (cflags & KMC_NOTOUCH)
3743                 cp->cache_flags &= ~KMF_TOUCH;
3744 
3745         if (cflags & KMC_PREFILL)
3746                 cp->cache_flags |= KMF_PREFILL;
3747 
3748         if (cflags & KMC_NOHASH)
3749                 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3750 
3751         if (cflags & KMC_NOMAGAZINE)
3752                 cp->cache_flags |= KMF_NOMAGAZINE;
3753 
3754         if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH))
3755                 cp->cache_flags |= KMF_REDZONE;
3756 
3757         if (!(cp->cache_flags & KMF_AUDIT))
3758                 cp->cache_flags &= ~KMF_CONTENTS;
3759 
3760         if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall &&
3761             !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH))
3762                 cp->cache_flags |= KMF_FIREWALL;
3763 
3764         if (vmp != kmem_default_arena || kmem_firewall_arena == NULL)
3765                 cp->cache_flags &= ~KMF_FIREWALL;
3766 
3767         if (cp->cache_flags & KMF_FIREWALL) {
3768                 cp->cache_flags &= ~KMF_BUFTAG;
3769                 cp->cache_flags |= KMF_NOMAGAZINE;
3770                 ASSERT(vmp == kmem_default_arena);
3771                 vmp = kmem_firewall_arena;
3772         }
3773 
3774         /*
3775          * Set cache properties.
3776          */
3777         (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN);
3778         strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1);
3779         cp->cache_bufsize = bufsize;
3780         cp->cache_align = align;
3781         cp->cache_constructor = constructor;
3782         cp->cache_destructor = destructor;
3783         cp->cache_reclaim = reclaim;
3784         cp->cache_private = private;
3785         cp->cache_arena = vmp;
3786         cp->cache_cflags = cflags;
3787 
3788         /*
3789          * Determine the chunk size.
3790          */
3791         chunksize = bufsize;
3792 
3793         if (align >= KMEM_ALIGN) {
3794                 chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN);
3795                 cp->cache_bufctl = chunksize - KMEM_ALIGN;
3796         }
3797 
3798         if (cp->cache_flags & KMF_BUFTAG) {
3799                 cp->cache_bufctl = chunksize;
3800                 cp->cache_buftag = chunksize;
3801                 if (cp->cache_flags & KMF_LITE)
3802                         chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count);
3803                 else
3804                         chunksize += sizeof (kmem_buftag_t);
3805         }
3806 
3807         if (cp->cache_flags & KMF_DEADBEEF) {
3808                 cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify);
3809                 if (cp->cache_flags & KMF_LITE)
3810                         cp->cache_verify = sizeof (uint64_t);
3811         }
3812 
3813         cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave);
3814 
3815         cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
3816 
3817         /*
3818          * Now that we know the chunk size, determine the optimal slab size.
3819          */
3820         if (vmp == kmem_firewall_arena) {
3821                 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
3822                 cp->cache_mincolor = cp->cache_slabsize - chunksize;
3823                 cp->cache_maxcolor = cp->cache_mincolor;
3824                 cp->cache_flags |= KMF_HASH;
3825                 ASSERT(!(cp->cache_flags & KMF_BUFTAG));
3826         } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) &&
3827             !(cp->cache_flags & KMF_AUDIT) &&
3828             chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) {
3829                 cp->cache_slabsize = vmp->vm_quantum;
3830                 cp->cache_mincolor = 0;
3831                 cp->cache_maxcolor =
3832                     (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize;
3833                 ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize);
3834                 ASSERT(!(cp->cache_flags & KMF_AUDIT));
3835         } else {
3836                 size_t chunks, bestfit, waste, slabsize;
3837                 size_t minwaste = LONG_MAX;
3838 
3839                 for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) {
3840                         slabsize = P2ROUNDUP(chunksize * chunks,
3841                             vmp->vm_quantum);
3842                         chunks = slabsize / chunksize;
3843                         waste = (slabsize % chunksize) / chunks;
3844                         if (waste < minwaste) {
3845                                 minwaste = waste;
3846                                 bestfit = slabsize;
3847                         }
3848                 }
3849                 if (cflags & KMC_QCACHE)
3850                         bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max);
3851                 cp->cache_slabsize = bestfit;
3852                 cp->cache_mincolor = 0;
3853                 cp->cache_maxcolor = bestfit % chunksize;
3854                 cp->cache_flags |= KMF_HASH;
3855         }
3856 
3857         cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize);
3858         cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1;
3859 
3860         /*
3861          * Disallowing prefill when either the DEBUG or HASH flag is set or when
3862          * there is a constructor avoids some tricky issues with debug setup
3863          * that may be revisited later. We cannot allow prefill in a
3864          * metadata cache because of potential recursion.
3865          */
3866         if (vmp == kmem_msb_arena ||
3867             cp->cache_flags & (KMF_HASH | KMF_BUFTAG) ||
3868             cp->cache_constructor != NULL)
3869                 cp->cache_flags &= ~KMF_PREFILL;
3870 
3871         if (cp->cache_flags & KMF_HASH) {
3872                 ASSERT(!(cflags & KMC_NOHASH));
3873                 cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ?
3874                     kmem_bufctl_audit_cache : kmem_bufctl_cache;
3875         }
3876 
3877         if (cp->cache_maxcolor >= vmp->vm_quantum)
3878                 cp->cache_maxcolor = vmp->vm_quantum - 1;
3879 
3880         cp->cache_color = cp->cache_mincolor;
3881 
3882         /*
3883          * Initialize the rest of the slab layer.
3884          */
3885         mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL);
3886 
3887         avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp,
3888             sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3889         /* LINTED: E_TRUE_LOGICAL_EXPR */
3890         ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
3891         /* reuse partial slab AVL linkage for complete slab list linkage */
3892         list_create(&cp->cache_complete_slabs,
3893             sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3894 
3895         if (cp->cache_flags & KMF_HASH) {
3896                 cp->cache_hash_table = vmem_alloc(kmem_hash_arena,
3897                     KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP);
3898                 bzero(cp->cache_hash_table,
3899                     KMEM_HASH_INITIAL * sizeof (void *));
3900                 cp->cache_hash_mask = KMEM_HASH_INITIAL - 1;
3901                 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
3902         }
3903 
3904         /*
3905          * Initialize the depot.
3906          */
3907         mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL);
3908 
3909         for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
3910                 continue;
3911 
3912         cp->cache_magtype = mtp;
3913 
3914         /*
3915          * Initialize the CPU layer.
3916          */
3917         for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3918                 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3919                 mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL);
3920                 ccp->cc_flags = cp->cache_flags;
3921                 ccp->cc_rounds = -1;
3922                 ccp->cc_prounds = -1;
3923         }
3924 
3925         /*
3926          * Create the cache's kstats.
3927          */
3928         if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name,
3929             "kmem_cache", KSTAT_TYPE_NAMED,
3930             sizeof (kmem_cache_kstat) / sizeof (kstat_named_t),
3931             KSTAT_FLAG_VIRTUAL)) != NULL) {
3932                 cp->cache_kstat->ks_data = &kmem_cache_kstat;
3933                 cp->cache_kstat->ks_update = kmem_cache_kstat_update;
3934                 cp->cache_kstat->ks_private = cp;
3935                 cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock;
3936                 kstat_install(cp->cache_kstat);
3937         }
3938 
3939         /*
3940          * Add the cache to the global list.  This makes it visible
3941          * to kmem_update(), so the cache must be ready for business.
3942          */
3943         mutex_enter(&kmem_cache_lock);
3944         list_insert_tail(&kmem_caches, cp);
3945         mutex_exit(&kmem_cache_lock);
3946 
3947         if (kmem_ready)
3948                 kmem_cache_magazine_enable(cp);
3949 
3950         return (cp);
3951 }
3952 
3953 static int
3954 kmem_move_cmp(const void *buf, const void *p)
3955 {
3956         const kmem_move_t *kmm = p;
3957         uintptr_t v1 = (uintptr_t)buf;
3958         uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf;
3959         return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0));
3960 }
3961 
3962 static void
3963 kmem_reset_reclaim_threshold(kmem_defrag_t *kmd)
3964 {
3965         kmd->kmd_reclaim_numer = 1;
3966 }
3967 
3968 /*
3969  * Initially, when choosing candidate slabs for buffers to move, we want to be
3970  * very selective and take only slabs that are less than
3971  * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate
3972  * slabs, then we raise the allocation ceiling incrementally. The reclaim
3973  * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no
3974  * longer fragmented.
3975  */
3976 static void
3977 kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction)
3978 {
3979         if (direction > 0) {
3980                 /* make it easier to find a candidate slab */
3981                 if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) {
3982                         kmd->kmd_reclaim_numer++;
3983                 }
3984         } else {
3985                 /* be more selective */
3986                 if (kmd->kmd_reclaim_numer > 1) {
3987                         kmd->kmd_reclaim_numer--;
3988                 }
3989         }
3990 }
3991 
3992 void
3993 kmem_cache_set_move(kmem_cache_t *cp,
3994     kmem_cbrc_t (*move)(void *, void *, size_t, void *))
3995 {
3996         kmem_defrag_t *defrag;
3997 
3998         ASSERT(move != NULL);
3999         /*
4000          * The consolidator does not support NOTOUCH caches because kmem cannot
4001          * initialize their slabs with the 0xbaddcafe memory pattern, which sets
4002          * a low order bit usable by clients to distinguish uninitialized memory
4003          * from known objects (see kmem_slab_create).
4004          */
4005         ASSERT(!(cp->cache_cflags & KMC_NOTOUCH));
4006         ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER));
4007 
4008         /*
4009          * We should not be holding anyone's cache lock when calling
4010          * kmem_cache_alloc(), so allocate in all cases before acquiring the
4011          * lock.
4012          */
4013         defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP);
4014 
4015         mutex_enter(&cp->cache_lock);
4016 
4017         if (KMEM_IS_MOVABLE(cp)) {
4018                 if (cp->cache_move == NULL) {
4019                         ASSERT(cp->cache_slab_alloc == 0);
4020 
4021                         cp->cache_defrag = defrag;
4022                         defrag = NULL; /* nothing to free */
4023                         bzero(cp->cache_defrag, sizeof (kmem_defrag_t));
4024                         avl_create(&cp->cache_defrag->kmd_moves_pending,
4025                             kmem_move_cmp, sizeof (kmem_move_t),
4026                             offsetof(kmem_move_t, kmm_entry));
4027                         /* LINTED: E_TRUE_LOGICAL_EXPR */
4028                         ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
4029                         /* reuse the slab's AVL linkage for deadlist linkage */
4030                         list_create(&cp->cache_defrag->kmd_deadlist,
4031                             sizeof (kmem_slab_t),
4032                             offsetof(kmem_slab_t, slab_link));
4033                         kmem_reset_reclaim_threshold(cp->cache_defrag);
4034                 }
4035                 cp->cache_move = move;
4036         }
4037 
4038         mutex_exit(&cp->cache_lock);
4039 
4040         if (defrag != NULL) {
4041                 kmem_cache_free(kmem_defrag_cache, defrag); /* unused */
4042         }
4043 }
4044 
4045 void
4046 kmem_cache_destroy(kmem_cache_t *cp)
4047 {
4048         int cpu_seqid;
4049 
4050         /*
4051          * Remove the cache from the global cache list so that no one else
4052          * can schedule tasks on its behalf, wait for any pending tasks to
4053          * complete, purge the cache, and then destroy it.
4054          */
4055         mutex_enter(&kmem_cache_lock);
4056         list_remove(&kmem_caches, cp);
4057         mutex_exit(&kmem_cache_lock);
4058 
4059         if (kmem_taskq != NULL)
4060                 taskq_wait(kmem_taskq);
4061 
4062         if (kmem_move_taskq != NULL && cp->cache_defrag != NULL)
4063                 taskq_wait(kmem_move_taskq);
4064 
4065         kmem_cache_magazine_purge(cp);
4066 
4067         mutex_enter(&cp->cache_lock);
4068         if (cp->cache_buftotal != 0)
4069                 cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty",
4070                     cp->cache_name, (void *)cp);
4071         if (cp->cache_defrag != NULL) {
4072                 avl_destroy(&cp->cache_defrag->kmd_moves_pending);
4073                 list_destroy(&cp->cache_defrag->kmd_deadlist);
4074                 kmem_cache_free(kmem_defrag_cache, cp->cache_defrag);
4075                 cp->cache_defrag = NULL;
4076         }
4077         /*
4078          * The cache is now dead.  There should be no further activity.  We
4079          * enforce this by setting land mines in the constructor, destructor,
4080          * reclaim, and move routines that induce a kernel text fault if
4081          * invoked.
4082          */
4083         cp->cache_constructor = (int (*)(void *, void *, int))1;
4084         cp->cache_destructor = (void (*)(void *, void *))2;
4085         cp->cache_reclaim = (void (*)(void *))3;
4086         cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4;
4087         mutex_exit(&cp->cache_lock);
4088 
4089         kstat_delete(cp->cache_kstat);
4090 
4091         if (cp->cache_hash_table != NULL)
4092                 vmem_free(kmem_hash_arena, cp->cache_hash_table,
4093                     (cp->cache_hash_mask + 1) * sizeof (void *));
4094 
4095         for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++)
4096                 mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
4097 
4098         mutex_destroy(&cp->cache_depot_lock);
4099         mutex_destroy(&cp->cache_lock);
4100 
4101         vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus));
4102 }
4103 
4104 /*ARGSUSED*/
4105 static int
4106 kmem_cpu_setup(cpu_setup_t what, int id, void *arg)
4107 {
4108         ASSERT(MUTEX_HELD(&cpu_lock));
4109         if (what == CPU_UNCONFIG) {
4110                 kmem_cache_applyall(kmem_cache_magazine_purge,
4111                     kmem_taskq, TQ_SLEEP);
4112                 kmem_cache_applyall(kmem_cache_magazine_enable,
4113                     kmem_taskq, TQ_SLEEP);
4114         }
4115         return (0);
4116 }
4117 
4118 static void
4119 kmem_alloc_caches_create(const int *array, size_t count,
4120     kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift)
4121 {
4122         char name[KMEM_CACHE_NAMELEN + 1];
4123         size_t table_unit = (1 << shift); /* range of one alloc_table entry */
4124         size_t size = table_unit;
4125         int i;
4126 
4127         for (i = 0; i < count; i++) {
4128                 size_t cache_size = array[i];
4129                 size_t align = KMEM_ALIGN;
4130                 kmem_cache_t *cp;
4131 
4132                 /* if the table has an entry for maxbuf, we're done */
4133                 if (size > maxbuf)
4134                         break;
4135 
4136                 /* cache size must be a multiple of the table unit */
4137                 ASSERT(P2PHASE(cache_size, table_unit) == 0);
4138 
4139                 /*
4140                  * If they allocate a multiple of the coherency granularity,
4141                  * they get a coherency-granularity-aligned address.
4142                  */
4143                 if (IS_P2ALIGNED(cache_size, 64))
4144                         align = 64;
4145                 if (IS_P2ALIGNED(cache_size, PAGESIZE))
4146                         align = PAGESIZE;
4147                 (void) snprintf(name, sizeof (name),
4148                     "kmem_alloc_%lu", cache_size);
4149                 cp = kmem_cache_create(name, cache_size, align,
4150                     NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC);
4151 
4152                 while (size <= cache_size) {
4153                         alloc_table[(size - 1) >> shift] = cp;
4154                         size += table_unit;
4155                 }
4156         }
4157 
4158         ASSERT(size > maxbuf);               /* i.e. maxbuf <= max(cache_size) */
4159 }
4160 
4161 static void
4162 kmem_cache_init(int pass, int use_large_pages)
4163 {
4164         int i;
4165         size_t maxbuf;
4166         kmem_magtype_t *mtp;
4167 
4168         for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) {
4169                 char name[KMEM_CACHE_NAMELEN + 1];
4170 
4171                 mtp = &kmem_magtype[i];
4172                 (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize);
4173                 mtp->mt_cache = kmem_cache_create(name,
4174                     (mtp->mt_magsize + 1) * sizeof (void *),
4175                     mtp->mt_align, NULL, NULL, NULL, NULL,
4176                     kmem_msb_arena, KMC_NOHASH);
4177         }
4178 
4179         kmem_slab_cache = kmem_cache_create("kmem_slab_cache",
4180             sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL,
4181             kmem_msb_arena, KMC_NOHASH);
4182 
4183         kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache",
4184             sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL,
4185             kmem_msb_arena, KMC_NOHASH);
4186 
4187         kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache",
4188             sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL,
4189             kmem_msb_arena, KMC_NOHASH);
4190 
4191         if (pass == 2) {
4192                 kmem_va_arena = vmem_create("kmem_va",
4193                     NULL, 0, PAGESIZE,
4194                     vmem_alloc, vmem_free, heap_arena,
4195                     8 * PAGESIZE, VM_SLEEP);
4196 
4197                 if (use_large_pages) {
4198                         kmem_default_arena = vmem_xcreate("kmem_default",
4199                             NULL, 0, PAGESIZE,
4200                             segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena,
4201                             0, VMC_DUMPSAFE | VM_SLEEP);
4202                 } else {
4203                         kmem_default_arena = vmem_create("kmem_default",
4204                             NULL, 0, PAGESIZE,
4205                             segkmem_alloc, segkmem_free, kmem_va_arena,
4206                             0, VMC_DUMPSAFE | VM_SLEEP);
4207                 }
4208 
4209                 /* Figure out what our maximum cache size is */
4210                 maxbuf = kmem_max_cached;
4211                 if (maxbuf <= KMEM_MAXBUF) {
4212                         maxbuf = 0;
4213                         kmem_max_cached = KMEM_MAXBUF;
4214                 } else {
4215                         size_t size = 0;
4216                         size_t max =
4217                             sizeof (kmem_big_alloc_sizes) / sizeof (int);
4218                         /*
4219                          * Round maxbuf up to an existing cache size.  If maxbuf
4220                          * is larger than the largest cache, we truncate it to
4221                          * the largest cache's size.
4222                          */
4223                         for (i = 0; i < max; i++) {
4224                                 size = kmem_big_alloc_sizes[i];
4225                                 if (maxbuf <= size)
4226                                         break;
4227                         }
4228                         kmem_max_cached = maxbuf = size;
4229                 }
4230 
4231                 /*
4232                  * The big alloc table may not be completely overwritten, so
4233                  * we clear out any stale cache pointers from the first pass.
4234                  */
4235                 bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table));
4236         } else {
4237                 /*
4238                  * During the first pass, the kmem_alloc_* caches
4239                  * are treated as metadata.
4240                  */
4241                 kmem_default_arena = kmem_msb_arena;
4242                 maxbuf = KMEM_BIG_MAXBUF_32BIT;
4243         }
4244 
4245         /*
4246          * Set up the default caches to back kmem_alloc()
4247          */
4248         kmem_alloc_caches_create(
4249             kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int),
4250             kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT);
4251 
4252         kmem_alloc_caches_create(
4253             kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int),
4254             kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT);
4255 
4256         kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT;
4257 }
4258 
4259 void
4260 kmem_init(void)
4261 {
4262         kmem_cache_t *cp;
4263         int old_kmem_flags = kmem_flags;
4264         int use_large_pages = 0;
4265         size_t maxverify, minfirewall;
4266 
4267         kstat_init();
4268 
4269         /*
4270          * Don't do firewalled allocations if the heap is less than 1TB
4271          * (i.e. on a 32-bit kernel)
4272          * The resulting VM_NEXTFIT allocations would create too much
4273          * fragmentation in a small heap.
4274          */
4275 #if defined(_LP64)
4276         maxverify = minfirewall = PAGESIZE / 2;
4277 #else
4278         maxverify = minfirewall = ULONG_MAX;
4279 #endif
4280 
4281         /* LINTED */
4282         ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE);
4283 
4284         list_create(&kmem_caches, sizeof (kmem_cache_t),
4285             offsetof(kmem_cache_t, cache_link));
4286 
4287         kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE,
4288             vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE,
4289             VM_SLEEP | VMC_NO_QCACHE);
4290 
4291         kmem_msb_arena = vmem_create("kmem_msb", NULL, 0,
4292             PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0,
4293             VMC_DUMPSAFE | VM_SLEEP);
4294 
4295         kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN,
4296             segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4297 
4298         kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN,
4299             segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4300 
4301         kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN,
4302             segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4303 
4304         kmem_firewall_va_arena = vmem_create("kmem_firewall_va",
4305             NULL, 0, PAGESIZE,
4306             kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena,
4307             0, VM_SLEEP);
4308 
4309         kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE,
4310             segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0,
4311             VMC_DUMPSAFE | VM_SLEEP);
4312 
4313         /* temporary oversize arena for mod_read_system_file */
4314         kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE,
4315             segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4316 
4317         kmem_reap_interval = 15 * hz;
4318 
4319         /*
4320          * Read /etc/system.  This is a chicken-and-egg problem because
4321          * kmem_flags may be set in /etc/system, but mod_read_system_file()
4322          * needs to use the allocator.  The simplest solution is to create
4323          * all the standard kmem caches, read /etc/system, destroy all the
4324          * caches we just created, and then create them all again in light
4325          * of the (possibly) new kmem_flags and other kmem tunables.
4326          */
4327         kmem_cache_init(1, 0);
4328 
4329         mod_read_system_file(boothowto & RB_ASKNAME);
4330 
4331         while ((cp = list_tail(&kmem_caches)) != NULL)
4332                 kmem_cache_destroy(cp);
4333 
4334         vmem_destroy(kmem_oversize_arena);
4335 
4336         if (old_kmem_flags & KMF_STICKY)
4337                 kmem_flags = old_kmem_flags;
4338 
4339         if (!(kmem_flags & KMF_AUDIT))
4340                 vmem_seg_size = offsetof(vmem_seg_t, vs_thread);
4341 
4342         if (kmem_maxverify == 0)
4343                 kmem_maxverify = maxverify;
4344 
4345         if (kmem_minfirewall == 0)
4346                 kmem_minfirewall = minfirewall;
4347 
4348         /*
4349          * give segkmem a chance to figure out if we are using large pages
4350          * for the kernel heap
4351          */
4352         use_large_pages = segkmem_lpsetup();
4353 
4354         /*
4355          * To protect against corruption, we keep the actual number of callers
4356          * KMF_LITE records seperate from the tunable.  We arbitrarily clamp
4357          * to 16, since the overhead for small buffers quickly gets out of
4358          * hand.
4359          *
4360          * The real limit would depend on the needs of the largest KMC_NOHASH
4361          * cache.
4362          */
4363         kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16);
4364         kmem_lite_pcs = kmem_lite_count;
4365 
4366         /*
4367          * Normally, we firewall oversized allocations when possible, but
4368          * if we are using large pages for kernel memory, and we don't have
4369          * any non-LITE debugging flags set, we want to allocate oversized
4370          * buffers from large pages, and so skip the firewalling.
4371          */
4372         if (use_large_pages &&
4373             ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) {
4374                 kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0,
4375                     PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena,
4376                     0, VMC_DUMPSAFE | VM_SLEEP);
4377         } else {
4378                 kmem_oversize_arena = vmem_create("kmem_oversize",
4379                     NULL, 0, PAGESIZE,
4380                     segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX?
4381                     kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE |
4382                     VM_SLEEP);
4383         }
4384 
4385         kmem_cache_init(2, use_large_pages);
4386 
4387         if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) {
4388                 if (kmem_transaction_log_size == 0)
4389                         kmem_transaction_log_size = kmem_maxavail() / 50;
4390                 kmem_transaction_log = kmem_log_init(kmem_transaction_log_size);
4391         }
4392 
4393         if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) {
4394                 if (kmem_content_log_size == 0)
4395                         kmem_content_log_size = kmem_maxavail() / 50;
4396                 kmem_content_log = kmem_log_init(kmem_content_log_size);
4397         }
4398 
4399         kmem_failure_log = kmem_log_init(kmem_failure_log_size);
4400 
4401         kmem_slab_log = kmem_log_init(kmem_slab_log_size);
4402 
4403         /*
4404          * Initialize STREAMS message caches so allocb() is available.
4405          * This allows us to initialize the logging framework (cmn_err(9F),
4406          * strlog(9F), etc) so we can start recording messages.
4407          */
4408         streams_msg_init();
4409 
4410         /*
4411          * Initialize the ZSD framework in Zones so modules loaded henceforth
4412          * can register their callbacks.
4413          */
4414         zone_zsd_init();
4415 
4416         log_init();
4417         taskq_init();
4418 
4419         /*
4420          * Warn about invalid or dangerous values of kmem_flags.
4421          * Always warn about unsupported values.
4422          */
4423         if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE |
4424             KMF_CONTENTS | KMF_LITE)) != 0) ||
4425             ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE))
4426                 cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. "
4427                     "See the Solaris Tunable Parameters Reference Manual.",
4428                     kmem_flags);
4429 
4430 #ifdef DEBUG
4431         if ((kmem_flags & KMF_DEBUG) == 0)
4432                 cmn_err(CE_NOTE, "kmem debugging disabled.");
4433 #else
4434         /*
4435          * For non-debug kernels, the only "normal" flags are 0, KMF_LITE,
4436          * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled
4437          * if KMF_AUDIT is set). We should warn the user about the performance
4438          * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE
4439          * isn't set (since that disables AUDIT).
4440          */
4441         if (!(kmem_flags & KMF_LITE) &&
4442             (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0)
4443                 cmn_err(CE_WARN, "High-overhead kmem debugging features "
4444                     "enabled (kmem_flags = 0x%x).  Performance degradation "
4445                     "and large memory overhead possible. See the Solaris "
4446                     "Tunable Parameters Reference Manual.", kmem_flags);
4447 #endif /* not DEBUG */
4448 
4449         kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP);
4450 
4451         kmem_ready = 1;
4452 
4453         /*
4454          * Initialize the platform-specific aligned/DMA memory allocator.
4455          */
4456         ka_init();
4457 
4458         /*
4459          * Initialize 32-bit ID cache.
4460          */
4461         id32_init();
4462 
4463         /*
4464          * Initialize the networking stack so modules loaded can
4465          * register their callbacks.
4466          */
4467         netstack_init();
4468 }
4469 
4470 static void
4471 kmem_move_init(void)
4472 {
4473         kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache",
4474             sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL,
4475             kmem_msb_arena, KMC_NOHASH);
4476         kmem_move_cache = kmem_cache_create("kmem_move_cache",
4477             sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL,
4478             kmem_msb_arena, KMC_NOHASH);
4479 
4480         /*
4481          * kmem guarantees that move callbacks are sequential and that even
4482          * across multiple caches no two moves ever execute simultaneously.
4483          * Move callbacks are processed on a separate taskq so that client code
4484          * does not interfere with internal maintenance tasks.
4485          */
4486         kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1,
4487             minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE);
4488 }
4489 
4490 void
4491 kmem_thread_init(void)
4492 {
4493         kmem_move_init();
4494         kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri,
4495             300, INT_MAX, TASKQ_PREPOPULATE);
4496 }
4497 
4498 void
4499 kmem_mp_init(void)
4500 {
4501         mutex_enter(&cpu_lock);
4502         register_cpu_setup_func(kmem_cpu_setup, NULL);
4503         mutex_exit(&cpu_lock);
4504 
4505         kmem_update_timeout(NULL);
4506 
4507         taskq_mp_init();
4508 }
4509 
4510 /*
4511  * Return the slab of the allocated buffer, or NULL if the buffer is not
4512  * allocated. This function may be called with a known slab address to determine
4513  * whether or not the buffer is allocated, or with a NULL slab address to obtain
4514  * an allocated buffer's slab.
4515  */
4516 static kmem_slab_t *
4517 kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf)
4518 {
4519         kmem_bufctl_t *bcp, *bufbcp;
4520 
4521         ASSERT(MUTEX_HELD(&cp->cache_lock));
4522         ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf));
4523 
4524         if (cp->cache_flags & KMF_HASH) {
4525                 for (bcp = *KMEM_HASH(cp, buf);
4526                     (bcp != NULL) && (bcp->bc_addr != buf);
4527                     bcp = bcp->bc_next) {
4528                         continue;
4529                 }
4530                 ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1);
4531                 return (bcp == NULL ? NULL : bcp->bc_slab);
4532         }
4533 
4534         if (sp == NULL) {
4535                 sp = KMEM_SLAB(cp, buf);
4536         }
4537         bufbcp = KMEM_BUFCTL(cp, buf);
4538         for (bcp = sp->slab_head;
4539             (bcp != NULL) && (bcp != bufbcp);
4540             bcp = bcp->bc_next) {
4541                 continue;
4542         }
4543         return (bcp == NULL ? sp : NULL);
4544 }
4545 
4546 static boolean_t
4547 kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags)
4548 {
4549         long refcnt = sp->slab_refcnt;
4550 
4551         ASSERT(cp->cache_defrag != NULL);
4552 
4553         /*
4554          * For code coverage we want to be able to move an object within the
4555          * same slab (the only partial slab) even if allocating the destination
4556          * buffer resulted in a completely allocated slab.
4557          */
4558         if (flags & KMM_DEBUG) {
4559                 return ((flags & KMM_DESPERATE) ||
4560                     ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0));
4561         }
4562 
4563         /* If we're desperate, we don't care if the client said NO. */
4564         if (flags & KMM_DESPERATE) {
4565                 return (refcnt < sp->slab_chunks); /* any partial */
4566         }
4567 
4568         if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4569                 return (B_FALSE);
4570         }
4571 
4572         if ((refcnt == 1) || kmem_move_any_partial) {
4573                 return (refcnt < sp->slab_chunks);
4574         }
4575 
4576         /*
4577          * The reclaim threshold is adjusted at each kmem_cache_scan() so that
4578          * slabs with a progressively higher percentage of used buffers can be
4579          * reclaimed until the cache as a whole is no longer fragmented.
4580          *
4581          *      sp->slab_refcnt   kmd_reclaim_numer
4582          *      --------------- < ------------------
4583          *      sp->slab_chunks   KMEM_VOID_FRACTION
4584          */
4585         return ((refcnt * KMEM_VOID_FRACTION) <
4586             (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer));
4587 }
4588 
4589 /*
4590  * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(),
4591  * or when the buffer is freed.
4592  */
4593 static void
4594 kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4595 {
4596         ASSERT(MUTEX_HELD(&cp->cache_lock));
4597         ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4598 
4599         if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4600                 return;
4601         }
4602 
4603         if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4604                 if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) {
4605                         avl_remove(&cp->cache_partial_slabs, sp);
4606                         sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
4607                         sp->slab_stuck_offset = (uint32_t)-1;
4608                         avl_add(&cp->cache_partial_slabs, sp);
4609                 }
4610         } else {
4611                 sp->slab_later_count = 0;
4612                 sp->slab_stuck_offset = (uint32_t)-1;
4613         }
4614 }
4615 
4616 static void
4617 kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4618 {
4619         ASSERT(taskq_member(kmem_move_taskq, curthread));
4620         ASSERT(MUTEX_HELD(&cp->cache_lock));
4621         ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4622 
4623         if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4624                 return;
4625         }
4626 
4627         avl_remove(&cp->cache_partial_slabs, sp);
4628         sp->slab_later_count = 0;
4629         sp->slab_flags |= KMEM_SLAB_NOMOVE;
4630         sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf);
4631         avl_add(&cp->cache_partial_slabs, sp);
4632 }
4633 
4634 static void kmem_move_end(kmem_cache_t *, kmem_move_t *);
4635 
4636 /*
4637  * The move callback takes two buffer addresses, the buffer to be moved, and a
4638  * newly allocated and constructed buffer selected by kmem as the destination.
4639  * It also takes the size of the buffer and an optional user argument specified
4640  * at cache creation time. kmem guarantees that the buffer to be moved has not
4641  * been unmapped by the virtual memory subsystem. Beyond that, it cannot
4642  * guarantee the present whereabouts of the buffer to be moved, so it is up to
4643  * the client to safely determine whether or not it is still using the buffer.
4644  * The client must not free either of the buffers passed to the move callback,
4645  * since kmem wants to free them directly to the slab layer. The client response
4646  * tells kmem which of the two buffers to free:
4647  *
4648  * YES          kmem frees the old buffer (the move was successful)
4649  * NO           kmem frees the new buffer, marks the slab of the old buffer
4650  *              non-reclaimable to avoid bothering the client again
4651  * LATER        kmem frees the new buffer, increments slab_later_count
4652  * DONT_KNOW    kmem frees the new buffer
4653  * DONT_NEED    kmem frees both the old buffer and the new buffer
4654  *
4655  * The pending callback argument now being processed contains both of the
4656  * buffers (old and new) passed to the move callback function, the slab of the
4657  * old buffer, and flags related to the move request, such as whether or not the
4658  * system was desperate for memory.
4659  *
4660  * Slabs are not freed while there is a pending callback, but instead are kept
4661  * on a deadlist, which is drained after the last callback completes. This means
4662  * that slabs are safe to access until kmem_move_end(), no matter how many of
4663  * their buffers have been freed. Once slab_refcnt reaches zero, it stays at
4664  * zero for as long as the slab remains on the deadlist and until the slab is
4665  * freed.
4666  */
4667 static void
4668 kmem_move_buffer(kmem_move_t *callback)
4669 {
4670         kmem_cbrc_t response;
4671         kmem_slab_t *sp = callback->kmm_from_slab;
4672         kmem_cache_t *cp = sp->slab_cache;
4673         boolean_t free_on_slab;
4674 
4675         ASSERT(taskq_member(kmem_move_taskq, curthread));
4676         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4677         ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf));
4678 
4679         /*
4680          * The number of allocated buffers on the slab may have changed since we
4681          * last checked the slab's reclaimability (when the pending move was
4682          * enqueued), or the client may have responded NO when asked to move
4683          * another buffer on the same slab.
4684          */
4685         if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) {
4686                 kmem_slab_free(cp, callback->kmm_to_buf);
4687                 kmem_move_end(cp, callback);
4688                 return;
4689         }
4690 
4691         /*
4692          * Checking the slab layer is easy, so we might as well do that here
4693          * in case we can avoid bothering the client.
4694          */
4695         mutex_enter(&cp->cache_lock);
4696         free_on_slab = (kmem_slab_allocated(cp, sp,
4697             callback->kmm_from_buf) == NULL);
4698         mutex_exit(&cp->cache_lock);
4699 
4700         if (free_on_slab) {
4701                 kmem_slab_free(cp, callback->kmm_to_buf);
4702                 kmem_move_end(cp, callback);
4703                 return;
4704         }
4705 
4706         if (cp->cache_flags & KMF_BUFTAG) {
4707                 /*
4708                  * Make kmem_cache_alloc_debug() apply the constructor for us.
4709                  */
4710                 if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf,
4711                     KM_NOSLEEP, 1, caller()) != 0) {
4712                         kmem_move_end(cp, callback);
4713                         return;
4714                 }
4715         } else if (cp->cache_constructor != NULL &&
4716             cp->cache_constructor(callback->kmm_to_buf, cp->cache_private,
4717             KM_NOSLEEP) != 0) {
4718                 atomic_inc_64(&cp->cache_alloc_fail);
4719                 kmem_slab_free(cp, callback->kmm_to_buf);
4720                 kmem_move_end(cp, callback);
4721                 return;
4722         }
4723 
4724         cp->cache_defrag->kmd_callbacks++;
4725         cp->cache_defrag->kmd_thread = curthread;
4726         cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf;
4727         cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf;
4728         DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *,
4729             callback);
4730 
4731         response = cp->cache_move(callback->kmm_from_buf,
4732             callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private);
4733 
4734         DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *,
4735             callback, kmem_cbrc_t, response);
4736         cp->cache_defrag->kmd_thread = NULL;
4737         cp->cache_defrag->kmd_from_buf = NULL;
4738         cp->cache_defrag->kmd_to_buf = NULL;
4739 
4740         if (response == KMEM_CBRC_YES) {
4741                 cp->cache_defrag->kmd_yes++;
4742                 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4743                 /* slab safe to access until kmem_move_end() */
4744                 if (sp->slab_refcnt == 0)
4745                         cp->cache_defrag->kmd_slabs_freed++;
4746                 mutex_enter(&cp->cache_lock);
4747                 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4748                 mutex_exit(&cp->cache_lock);
4749                 kmem_move_end(cp, callback);
4750                 return;
4751         }
4752 
4753         switch (response) {
4754         case KMEM_CBRC_NO:
4755                 cp->cache_defrag->kmd_no++;
4756                 mutex_enter(&cp->cache_lock);
4757                 kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4758                 mutex_exit(&cp->cache_lock);
4759                 break;
4760         case KMEM_CBRC_LATER:
4761                 cp->cache_defrag->kmd_later++;
4762                 mutex_enter(&cp->cache_lock);
4763                 if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4764                         mutex_exit(&cp->cache_lock);
4765                         break;
4766                 }
4767 
4768                 if (++sp->slab_later_count >= KMEM_DISBELIEF) {
4769                         kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4770                 } else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) {
4771                         sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp,
4772                             callback->kmm_from_buf);
4773                 }
4774                 mutex_exit(&cp->cache_lock);
4775                 break;
4776         case KMEM_CBRC_DONT_NEED:
4777                 cp->cache_defrag->kmd_dont_need++;
4778                 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4779                 if (sp->slab_refcnt == 0)
4780                         cp->cache_defrag->kmd_slabs_freed++;
4781                 mutex_enter(&cp->cache_lock);
4782                 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4783                 mutex_exit(&cp->cache_lock);
4784                 break;
4785         case KMEM_CBRC_DONT_KNOW:
4786                 /*
4787                  * If we don't know if we can move this buffer or not, we'll
4788                  * just assume that we can't:  if the buffer is in fact free,
4789                  * then it is sitting in one of the per-CPU magazines or in
4790                  * a full magazine in the depot layer.  Either way, because
4791                  * defrag is induced in the same logic that reaps a cache,
4792                  * it's likely that full magazines will be returned to the
4793                  * system soon (thereby accomplishing what we're trying to
4794                  * accomplish here: return those magazines to their slabs).
4795                  * Given this, any work that we might do now to locate a buffer
4796                  * in a magazine is wasted (and expensive!) work; we bump
4797                  * a counter in this case and otherwise assume that we can't
4798                  * move it.
4799                  */
4800                 cp->cache_defrag->kmd_dont_know++;
4801                 break;
4802         default:
4803                 panic("'%s' (%p) unexpected move callback response %d\n",
4804                     cp->cache_name, (void *)cp, response);
4805         }
4806 
4807         kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE);
4808         kmem_move_end(cp, callback);
4809 }
4810 
4811 /* Return B_FALSE if there is insufficient memory for the move request. */
4812 static boolean_t
4813 kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags)
4814 {
4815         void *to_buf;
4816         avl_index_t index;
4817         kmem_move_t *callback, *pending;
4818         ulong_t n;
4819 
4820         ASSERT(taskq_member(kmem_taskq, curthread));
4821         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4822         ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
4823 
4824         callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP);
4825 
4826         if (callback == NULL)
4827                 return (B_FALSE);
4828 
4829         callback->kmm_from_slab = sp;
4830         callback->kmm_from_buf = buf;
4831         callback->kmm_flags = flags;
4832 
4833         mutex_enter(&cp->cache_lock);
4834 
4835         n = avl_numnodes(&cp->cache_partial_slabs);
4836         if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) {
4837                 mutex_exit(&cp->cache_lock);
4838                 kmem_cache_free(kmem_move_cache, callback);
4839                 return (B_TRUE); /* there is no need for the move request */
4840         }
4841 
4842         pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index);
4843         if (pending != NULL) {
4844                 /*
4845                  * If the move is already pending and we're desperate now,
4846                  * update the move flags.
4847                  */
4848                 if (flags & KMM_DESPERATE) {
4849                         pending->kmm_flags |= KMM_DESPERATE;
4850                 }
4851                 mutex_exit(&cp->cache_lock);
4852                 kmem_cache_free(kmem_move_cache, callback);
4853                 return (B_TRUE);
4854         }
4855 
4856         to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs),
4857             B_FALSE);
4858         callback->kmm_to_buf = to_buf;
4859         avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index);
4860 
4861         mutex_exit(&cp->cache_lock);
4862 
4863         if (taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer,
4864             callback, TQ_NOSLEEP) == TASKQID_INVALID) {
4865                 mutex_enter(&cp->cache_lock);
4866                 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4867                 mutex_exit(&cp->cache_lock);
4868                 kmem_slab_free(cp, to_buf);
4869                 kmem_cache_free(kmem_move_cache, callback);
4870                 return (B_FALSE);
4871         }
4872 
4873         return (B_TRUE);
4874 }
4875 
4876 static void
4877 kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback)
4878 {
4879         avl_index_t index;
4880 
4881         ASSERT(cp->cache_defrag != NULL);
4882         ASSERT(taskq_member(kmem_move_taskq, curthread));
4883         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4884 
4885         mutex_enter(&cp->cache_lock);
4886         VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending,
4887             callback->kmm_from_buf, &index) != NULL);
4888         avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4889         if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) {
4890                 list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
4891                 kmem_slab_t *sp;
4892 
4893                 /*
4894                  * The last pending move completed. Release all slabs from the
4895                  * front of the dead list except for any slab at the tail that
4896                  * needs to be released from the context of kmem_move_buffers().
4897                  * kmem deferred unmapping the buffers on these slabs in order
4898                  * to guarantee that buffers passed to the move callback have
4899                  * been touched only by kmem or by the client itself.
4900                  */
4901                 while ((sp = list_remove_head(deadlist)) != NULL) {
4902                         if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
4903                                 list_insert_tail(deadlist, sp);
4904                                 break;
4905                         }
4906                         cp->cache_defrag->kmd_deadcount--;
4907                         cp->cache_slab_destroy++;
4908                         mutex_exit(&cp->cache_lock);
4909                         kmem_slab_destroy(cp, sp);
4910                         mutex_enter(&cp->cache_lock);
4911                 }
4912         }
4913         mutex_exit(&cp->cache_lock);
4914         kmem_cache_free(kmem_move_cache, callback);
4915 }
4916 
4917 /*
4918  * Move buffers from least used slabs first by scanning backwards from the end
4919  * of the partial slab list. Scan at most max_scan candidate slabs and move
4920  * buffers from at most max_slabs slabs (0 for all partial slabs in both cases).
4921  * If desperate to reclaim memory, move buffers from any partial slab, otherwise
4922  * skip slabs with a ratio of allocated buffers at or above the current
4923  * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the
4924  * scan is aborted) so that the caller can adjust the reclaimability threshold
4925  * depending on how many reclaimable slabs it finds.
4926  *
4927  * kmem_move_buffers() drops and reacquires cache_lock every time it issues a
4928  * move request, since it is not valid for kmem_move_begin() to call
4929  * kmem_cache_alloc() or taskq_dispatch() with cache_lock held.
4930  */
4931 static int
4932 kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs,
4933     int flags)
4934 {
4935         kmem_slab_t *sp;
4936         void *buf;
4937         int i, j; /* slab index, buffer index */
4938         int s; /* reclaimable slabs */
4939         int b; /* allocated (movable) buffers on reclaimable slab */
4940         boolean_t success;
4941         int refcnt;
4942         int nomove;
4943 
4944         ASSERT(taskq_member(kmem_taskq, curthread));
4945         ASSERT(MUTEX_HELD(&cp->cache_lock));
4946         ASSERT(kmem_move_cache != NULL);
4947         ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL);
4948         ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) :
4949             avl_numnodes(&cp->cache_partial_slabs) > 1);
4950 
4951         if (kmem_move_blocked) {
4952                 return (0);
4953         }
4954 
4955         if (kmem_move_fulltilt) {
4956                 flags |= KMM_DESPERATE;
4957         }
4958 
4959         if (max_scan == 0 || (flags & KMM_DESPERATE)) {
4960                 /*
4961                  * Scan as many slabs as needed to find the desired number of
4962                  * candidate slabs.
4963                  */
4964                 max_scan = (size_t)-1;
4965         }
4966 
4967         if (max_slabs == 0 || (flags & KMM_DESPERATE)) {
4968                 /* Find as many candidate slabs as possible. */
4969                 max_slabs = (size_t)-1;
4970         }
4971 
4972         sp = avl_last(&cp->cache_partial_slabs);
4973         ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
4974         for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) &&
4975             ((sp != avl_first(&cp->cache_partial_slabs)) ||
4976             (flags & KMM_DEBUG));
4977             sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) {
4978 
4979                 if (!kmem_slab_is_reclaimable(cp, sp, flags)) {
4980                         continue;
4981                 }
4982                 s++;
4983 
4984                 /* Look for allocated buffers to move. */
4985                 for (j = 0, b = 0, buf = sp->slab_base;
4986                     (j < sp->slab_chunks) && (b < sp->slab_refcnt);
4987                     buf = (((char *)buf) + cp->cache_chunksize), j++) {
4988 
4989                         if (kmem_slab_allocated(cp, sp, buf) == NULL) {
4990                                 continue;
4991                         }
4992 
4993                         b++;
4994 
4995                         /*
4996                          * Prevent the slab from being destroyed while we drop
4997                          * cache_lock and while the pending move is not yet
4998                          * registered. Flag the pending move while
4999                          * kmd_moves_pending may still be empty, since we can't
5000                          * yet rely on a non-zero pending move count to prevent
5001                          * the slab from being destroyed.
5002                          */
5003                         ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5004                         sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5005                         /*
5006                          * Recheck refcnt and nomove after reacquiring the lock,
5007                          * since these control the order of partial slabs, and
5008                          * we want to know if we can pick up the scan where we
5009                          * left off.
5010                          */
5011                         refcnt = sp->slab_refcnt;
5012                         nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE);
5013                         mutex_exit(&cp->cache_lock);
5014 
5015                         success = kmem_move_begin(cp, sp, buf, flags);
5016 
5017                         /*
5018                          * Now, before the lock is reacquired, kmem could
5019                          * process all pending move requests and purge the
5020                          * deadlist, so that upon reacquiring the lock, sp has
5021                          * been remapped. Or, the client may free all the
5022                          * objects on the slab while the pending moves are still
5023                          * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING
5024                          * flag causes the slab to be put at the end of the
5025                          * deadlist and prevents it from being destroyed, since
5026                          * we plan to destroy it here after reacquiring the
5027                          * lock.
5028                          */
5029                         mutex_enter(&cp->cache_lock);
5030                         ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5031                         sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5032 
5033                         if (sp->slab_refcnt == 0) {
5034                                 list_t *deadlist =
5035                                     &cp->cache_defrag->kmd_deadlist;
5036                                 list_remove(deadlist, sp);
5037 
5038                                 if (!avl_is_empty(
5039                                     &cp->cache_defrag->kmd_moves_pending)) {
5040                                         /*
5041                                          * A pending move makes it unsafe to
5042                                          * destroy the slab, because even though
5043                                          * the move is no longer needed, the
5044                                          * context where that is determined
5045                                          * requires the slab to exist.
5046                                          * Fortunately, a pending move also
5047                                          * means we don't need to destroy the
5048                                          * slab here, since it will get
5049                                          * destroyed along with any other slabs
5050                                          * on the deadlist after the last
5051                                          * pending move completes.
5052                                          */
5053                                         list_insert_head(deadlist, sp);
5054                                         return (-1);
5055                                 }
5056 
5057                                 /*
5058                                  * Destroy the slab now if it was completely
5059                                  * freed while we dropped cache_lock and there
5060                                  * are no pending moves. Since slab_refcnt
5061                                  * cannot change once it reaches zero, no new
5062                                  * pending moves from that slab are possible.
5063                                  */
5064                                 cp->cache_defrag->kmd_deadcount--;
5065                                 cp->cache_slab_destroy++;
5066                                 mutex_exit(&cp->cache_lock);
5067                                 kmem_slab_destroy(cp, sp);
5068                                 mutex_enter(&cp->cache_lock);
5069                                 /*
5070                                  * Since we can't pick up the scan where we left
5071                                  * off, abort the scan and say nothing about the
5072                                  * number of reclaimable slabs.
5073                                  */
5074                                 return (-1);
5075                         }
5076 
5077                         if (!success) {
5078                                 /*
5079                                  * Abort the scan if there is not enough memory
5080                                  * for the request and say nothing about the
5081                                  * number of reclaimable slabs.
5082                                  */
5083                                 return (-1);
5084                         }
5085 
5086                         /*
5087                          * The slab's position changed while the lock was
5088                          * dropped, so we don't know where we are in the
5089                          * sequence any more.
5090                          */
5091                         if (sp->slab_refcnt != refcnt) {
5092                                 /*
5093                                  * If this is a KMM_DEBUG move, the slab_refcnt
5094                                  * may have changed because we allocated a
5095                                  * destination buffer on the same slab. In that
5096                                  * case, we're not interested in counting it.
5097                                  */
5098                                 return (-1);
5099                         }
5100                         if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove)
5101                                 return (-1);
5102 
5103                         /*
5104                          * Generating a move request allocates a destination
5105                          * buffer from the slab layer, bumping the first partial
5106                          * slab if it is completely allocated. If the current
5107                          * slab becomes the first partial slab as a result, we
5108                          * can't continue to scan backwards.
5109                          *
5110                          * If this is a KMM_DEBUG move and we allocated the
5111                          * destination buffer from the last partial slab, then
5112                          * the buffer we're moving is on the same slab and our
5113                          * slab_refcnt has changed, causing us to return before
5114                          * reaching here if there are no partial slabs left.
5115                          */
5116                         ASSERT(!avl_is_empty(&cp->cache_partial_slabs));
5117                         if (sp == avl_first(&cp->cache_partial_slabs)) {
5118                                 /*
5119                                  * We're not interested in a second KMM_DEBUG
5120                                  * move.
5121                                  */
5122                                 goto end_scan;
5123                         }
5124                 }
5125         }
5126 end_scan:
5127 
5128         return (s);
5129 }
5130 
5131 typedef struct kmem_move_notify_args {
5132         kmem_cache_t *kmna_cache;
5133         void *kmna_buf;
5134 } kmem_move_notify_args_t;
5135 
5136 static void
5137 kmem_cache_move_notify_task(void *arg)
5138 {
5139         kmem_move_notify_args_t *args = arg;
5140         kmem_cache_t *cp = args->kmna_cache;
5141         void *buf = args->kmna_buf;
5142         kmem_slab_t *sp;
5143 
5144         ASSERT(taskq_member(kmem_taskq, curthread));
5145         ASSERT(list_link_active(&cp->cache_link));
5146 
5147         kmem_free(args, sizeof (kmem_move_notify_args_t));
5148         mutex_enter(&cp->cache_lock);
5149         sp = kmem_slab_allocated(cp, NULL, buf);
5150 
5151         /* Ignore the notification if the buffer is no longer allocated. */
5152         if (sp == NULL) {
5153                 mutex_exit(&cp->cache_lock);
5154                 return;
5155         }
5156 
5157         /* Ignore the notification if there's no reason to move the buffer. */
5158         if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5159                 /*
5160                  * So far the notification is not ignored. Ignore the
5161                  * notification if the slab is not marked by an earlier refusal
5162                  * to move a buffer.
5163                  */
5164                 if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) &&
5165                     (sp->slab_later_count == 0)) {
5166                         mutex_exit(&cp->cache_lock);
5167                         return;
5168                 }
5169 
5170                 kmem_slab_move_yes(cp, sp, buf);
5171                 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5172                 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5173                 mutex_exit(&cp->cache_lock);
5174                 /* see kmem_move_buffers() about dropping the lock */
5175                 (void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY);
5176                 mutex_enter(&cp->cache_lock);
5177                 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5178                 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5179                 if (sp->slab_refcnt == 0) {
5180                         list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
5181                         list_remove(deadlist, sp);
5182 
5183                         if (!avl_is_empty(
5184                             &cp->cache_defrag->kmd_moves_pending)) {
5185                                 list_insert_head(deadlist, sp);
5186                                 mutex_exit(&cp->cache_lock);
5187                                 return;
5188                         }
5189 
5190                         cp->cache_defrag->kmd_deadcount--;
5191                         cp->cache_slab_destroy++;
5192                         mutex_exit(&cp->cache_lock);
5193                         kmem_slab_destroy(cp, sp);
5194                         return;
5195                 }
5196         } else {
5197                 kmem_slab_move_yes(cp, sp, buf);
5198         }
5199         mutex_exit(&cp->cache_lock);
5200 }
5201 
5202 void
5203 kmem_cache_move_notify(kmem_cache_t *cp, void *buf)
5204 {
5205         kmem_move_notify_args_t *args;
5206 
5207         args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP);
5208         if (args != NULL) {
5209                 args->kmna_cache = cp;
5210                 args->kmna_buf = buf;
5211                 if (taskq_dispatch(kmem_taskq,
5212                     (task_func_t *)kmem_cache_move_notify_task, args,
5213                     TQ_NOSLEEP) == TASKQID_INVALID)
5214                         kmem_free(args, sizeof (kmem_move_notify_args_t));
5215         }
5216 }
5217 
5218 static void
5219 kmem_cache_defrag(kmem_cache_t *cp)
5220 {
5221         size_t n;
5222 
5223         ASSERT(cp->cache_defrag != NULL);
5224 
5225         mutex_enter(&cp->cache_lock);
5226         n = avl_numnodes(&cp->cache_partial_slabs);
5227         if (n > 1) {
5228                 /* kmem_move_buffers() drops and reacquires cache_lock */
5229                 cp->cache_defrag->kmd_defrags++;
5230                 (void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE);
5231         }
5232         mutex_exit(&cp->cache_lock);
5233 }
5234 
5235 /* Is this cache above the fragmentation threshold? */
5236 static boolean_t
5237 kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree)
5238 {
5239         /*
5240          *      nfree           kmem_frag_numer
5241          * ------------------ > ---------------
5242          * cp->cache_buftotal        kmem_frag_denom
5243          */
5244         return ((nfree * kmem_frag_denom) >
5245             (cp->cache_buftotal * kmem_frag_numer));
5246 }
5247 
5248 static boolean_t
5249 kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap)
5250 {
5251         boolean_t fragmented;
5252         uint64_t nfree;
5253 
5254         ASSERT(MUTEX_HELD(&cp->cache_lock));
5255         *doreap = B_FALSE;
5256 
5257         if (kmem_move_fulltilt) {
5258                 if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5259                         return (B_TRUE);
5260                 }
5261         } else {
5262                 if ((cp->cache_complete_slab_count + avl_numnodes(
5263                     &cp->cache_partial_slabs)) < kmem_frag_minslabs) {
5264                         return (B_FALSE);
5265                 }
5266         }
5267 
5268         nfree = cp->cache_bufslab;
5269         fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) &&
5270             kmem_cache_frag_threshold(cp, nfree));
5271 
5272         /*
5273          * Free buffers in the magazine layer appear allocated from the point of
5274          * view of the slab layer. We want to know if the slab layer would
5275          * appear fragmented if we included free buffers from magazines that
5276          * have fallen out of the working set.
5277          */
5278         if (!fragmented) {
5279                 long reap;
5280 
5281                 mutex_enter(&cp->cache_depot_lock);
5282                 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
5283                 reap = MIN(reap, cp->cache_full.ml_total);
5284                 mutex_exit(&cp->cache_depot_lock);
5285 
5286                 nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
5287                 if (kmem_cache_frag_threshold(cp, nfree)) {
5288                         *doreap = B_TRUE;
5289                 }
5290         }
5291 
5292         return (fragmented);
5293 }
5294 
5295 /* Called periodically from kmem_taskq */
5296 static void
5297 kmem_cache_scan(kmem_cache_t *cp)
5298 {
5299         boolean_t reap = B_FALSE;
5300         kmem_defrag_t *kmd;
5301 
5302         ASSERT(taskq_member(kmem_taskq, curthread));
5303 
5304         mutex_enter(&cp->cache_lock);
5305 
5306         kmd = cp->cache_defrag;
5307         if (kmd->kmd_consolidate > 0) {
5308                 kmd->kmd_consolidate--;
5309                 mutex_exit(&cp->cache_lock);
5310                 kmem_cache_reap(cp);
5311                 return;
5312         }
5313 
5314         if (kmem_cache_is_fragmented(cp, &reap)) {
5315                 size_t slabs_found;
5316 
5317                 /*
5318                  * Consolidate reclaimable slabs from the end of the partial
5319                  * slab list (scan at most kmem_reclaim_scan_range slabs to find
5320                  * reclaimable slabs). Keep track of how many candidate slabs we
5321                  * looked for and how many we actually found so we can adjust
5322                  * the definition of a candidate slab if we're having trouble
5323                  * finding them.
5324                  *
5325                  * kmem_move_buffers() drops and reacquires cache_lock.
5326                  */
5327                 kmd->kmd_scans++;
5328                 slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range,
5329                     kmem_reclaim_max_slabs, 0);
5330                 if (slabs_found >= 0) {
5331                         kmd->kmd_slabs_sought += kmem_reclaim_max_slabs;
5332                         kmd->kmd_slabs_found += slabs_found;
5333                 }
5334 
5335                 if (++kmd->kmd_tries >= kmem_reclaim_scan_range) {
5336                         kmd->kmd_tries = 0;
5337 
5338                         /*
5339                          * If we had difficulty finding candidate slabs in
5340                          * previous scans, adjust the threshold so that
5341                          * candidates are easier to find.
5342                          */
5343                         if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) {
5344                                 kmem_adjust_reclaim_threshold(kmd, -1);
5345                         } else if ((kmd->kmd_slabs_found * 2) <
5346                             kmd->kmd_slabs_sought) {
5347                                 kmem_adjust_reclaim_threshold(kmd, 1);
5348                         }
5349                         kmd->kmd_slabs_sought = 0;
5350                         kmd->kmd_slabs_found = 0;
5351                 }
5352         } else {
5353                 kmem_reset_reclaim_threshold(cp->cache_defrag);
5354 #ifdef  DEBUG
5355                 if (!avl_is_empty(&cp->cache_partial_slabs)) {
5356                         /*
5357                          * In a debug kernel we want the consolidator to
5358                          * run occasionally even when there is plenty of
5359                          * memory.
5360                          */
5361                         uint16_t debug_rand;
5362 
5363                         (void) random_get_bytes((uint8_t *)&debug_rand, 2);
5364                         if (!kmem_move_noreap &&
5365                             ((debug_rand % kmem_mtb_reap) == 0)) {
5366                                 mutex_exit(&cp->cache_lock);
5367                                 kmem_cache_reap(cp);
5368                                 return;
5369                         } else if ((debug_rand % kmem_mtb_move) == 0) {
5370                                 kmd->kmd_scans++;
5371                                 (void) kmem_move_buffers(cp,
5372                                     kmem_reclaim_scan_range, 1, KMM_DEBUG);
5373                         }
5374                 }
5375 #endif  /* DEBUG */
5376         }
5377 
5378         mutex_exit(&cp->cache_lock);
5379 
5380         if (reap)
5381                 kmem_depot_ws_reap(cp);
5382 }