1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
  24  * Use is subject to license terms.
  25  */
  26 
  27 #include <sys/types.h>
  28 #include <sys/systm.h>
  29 #include <sys/cred.h>
  30 #include <sys/modctl.h>
  31 #include <sys/vfs.h>
  32 #include <sys/vfs_opreg.h>
  33 #include <sys/sysmacros.h>
  34 #include <sys/cmn_err.h>
  35 #include <sys/stat.h>
  36 #include <sys/errno.h>
  37 #include <sys/kmem.h>
  38 #include <sys/file.h>
  39 #include <sys/kstat.h>
  40 #include <sys/port_impl.h>
  41 #include <sys/task.h>
  42 #include <sys/project.h>
  43 
  44 /*
  45  * Event Ports can be shared across threads or across processes.
  46  * Every thread/process can use an own event port or a group of them
  47  * can use a single port. A major request was also to get the ability
  48  * to submit user-defined events to a port. The idea of the
  49  * user-defined events is to use the event ports for communication between
  50  * threads/processes (like message queues). User defined-events are queued
  51  * in a port with the same priority as other event types.
  52  *
  53  * Events are delivered only once. The thread/process which is waiting
  54  * for events with the "highest priority" (priority here is related to the
  55  * internal strategy to wakeup waiting threads) will retrieve the event,
  56  * all other threads/processes will not be notified. There is also
  57  * the requirement to have events which should be submitted immediately
  58  * to all "waiting" threads. That is the main task of the alert event.
  59  * The alert event is submitted by the application to a port. The port
  60  * changes from a standard mode to the alert mode. Now all waiting threads
  61  * will be awaken immediately and they will return with the alert event.
  62  * Threads trying to retrieve events from a port in alert mode will
  63  * return immediately with the alert event.
  64  *
  65  *
  66  * An event port is like a kernel queue, which accept events submitted from
  67  * user level as well as events submitted from kernel sub-systems. Sub-systems
  68  * able to submit events to a port are the so-called "event sources".
  69  * Current event sources:
  70  * PORT_SOURCE_AIO       : events submitted per transaction completion from
  71  *                         POSIX-I/O framework.
  72  * PORT_SOURCE_TIMER     : events submitted when a timer fires
  73  *                         (see timer_create(3RT)).
  74  * PORT_SOURCE_FD        : events submitted per file descriptor (see poll(2)).
  75  * PORT_SOURCE_ALERT     : events submitted from user. This is not really a
  76  *                         single event, this is actually a port mode
  77  *                         (see port_alert(3c)).
  78  * PORT_SOURCE_USER      : events submitted by applications with
  79  *                         port_send(3c) or port_sendn(3c).
  80  * PORT_SOURCE_FILE      : events submitted per file being watched for file
  81  *                         change events  (see port_create(3c).
  82  *
  83  * There is a user API implemented in the libc library as well as a
  84  * kernel API implemented in port_subr.c in genunix.
  85  * The available user API functions are:
  86  * port_create() : create a port as a file descriptor of portfs file system
  87  *                 The standard close(2) function closes a port.
  88  * port_associate() : associate a file descriptor with a port to be able to
  89  *                    retrieve events from that file descriptor.
  90  * port_dissociate(): remove the association of a file descriptor with a port.
  91  * port_alert()  : set/unset a port in alert mode
  92  * port_send()   : send an event of type PORT_SOURCE_USER to a port
  93  * port_sendn()  : send an event of type PORT_SOURCE_USER to a list of ports
  94  * port_get()    : retrieve a single event from a port
  95  * port_getn()   : retrieve a list of events from a port
  96  *
  97  * The available kernel API functions are:
  98  * port_allocate_event(): allocate an event slot/structure of/from a port
  99  * port_init_event()    : set event data in the event structure
 100  * port_send_event()    : send event to a port
 101  * port_free_event()    : deliver allocated slot/structure back to a port
 102  * port_associate_ksource(): associate a kernel event source with a port
 103  * port_dissociate_ksource(): dissociate a kernel event source from a port
 104  *
 105  * The libc implementation consists of small functions which pass the
 106  * arguments to the kernel using the "portfs" system call. It means, all the
 107  * synchronisation work is being done in the kernel. The "portfs" system
 108  * call loads the portfs file system into the kernel.
 109  *
 110  * PORT CREATION
 111  * The first function to be used is port_create() which internally creates
 112  * a vnode and a portfs node. The portfs node is represented by the port_t
 113  * structure, which again includes all the data necessary to control a port.
 114  * port_create() returns a file descriptor, which needs to be used in almost
 115  * all other event port functions.
 116  * The maximum number of ports per system is controlled by the resource
 117  * control: project:port-max-ids.
 118  *
 119  * EVENT GENERATION
 120  * The second step is the triggering of events, which could be sent to a port.
 121  * Every event source implements an own method to generate events for a port:
 122  * PORT_SOURCE_AIO:
 123  *      The sigevent structure of the standard POSIX-IO functions
 124  *      was extended by an additional notification type.
 125  *      Standard notification types:
 126  *      SIGEV_NONE, SIGEV_SIGNAL and SIGEV_THREAD
 127  *      Event ports introduced now SIGEV_PORT.
 128  *      The notification type SIGEV_PORT specifies that a structure
 129  *      of type port_notify_t has to be attached to the sigev_value.
 130  *      The port_notify_t structure contains the event port file
 131  *      descriptor and a user-defined pointer.
 132  *      Internally the AIO implementation will use the kernel API
 133  *      functions to allocate an event port slot per transaction (aiocb)
 134  *      and sent the event to the port as soon as the transaction completes.
 135  *      All the events submitted per transaction are of type
 136  *      PORT_SOURCE_AIO.
 137  * PORT_SOURCE_TIMER:
 138  *      The timer_create() function uses the same method as the
 139  *      PORT_SOURCE_AIO event source. It also uses the sigevent structure
 140  *      to deliver the port information.
 141  *      Internally the timer code will allocate a single event slot/struct
 142  *      per timer and it will send the timer event as soon as the timer
 143  *      fires. If the timer-fired event is not delivered to the application
 144  *      before the next period elapsed, then an overrun counter will be
 145  *      incremented. The timer event source uses a callback function to
 146  *      detect the delivery of the event to the application. At that time
 147  *      the timer callback function will update the event overrun counter.
 148  * PORT_SOURCE_FD:
 149  *      This event source uses the port_associate() function to allocate
 150  *      an event slot/struct from a port. The application defines in the
 151  *      events argument of port_associate() the type of events which it is
 152  *      interested on.
 153  *      The internal pollwakeup() function is used by all the file
 154  *      systems --which are supporting the VOP_POLL() interface- to notify
 155  *      the upper layer (poll(2), devpoll(7d) and now event ports) about
 156  *      the event triggered (see valid events in poll(2)).
 157  *      The pollwakeup() function forwards the event to the layer registered
 158  *      to receive the current event.
 159  *      The port_dissociate() function can be used to free the allocated
 160  *      event slot from the port. Anyway, file descriptors deliver events
 161  *      only one time and remain deactivated until the application
 162  *      reactivates the association of a file descriptor with port_associate().
 163  *      If an associated file descriptor is closed then the file descriptor
 164  *      will be dissociated automatically from the port.
 165  *
 166  * PORT_SOURCE_ALERT:
 167  *      This event type is generated when the port was previously set in
 168  *      alert mode using the port_alert() function.
 169  *      A single alert event is delivered to every thread which tries to
 170  *      retrieve events from a port.
 171  * PORT_SOURCE_USER:
 172  *      This type of event is generated from user level using the port_send()
 173  *      function to send a user event to a port or the port_sendn() function
 174  *      to send an event to a list of ports.
 175  * PORT_SOURCE_FILE:
 176  *      This event source uses the port_associate() interface to register
 177  *      a file to be monitored for changes. The file name that needs to be
 178  *      monitored is specified in the file_obj_t structure, a pointer to which
 179  *      is passed as an argument. The event types to be monitored are specified
 180  *      in the events argument.
 181  *      A file events monitor is represented internal per port per object
 182  *      address(the file_obj_t pointer). Which means there can be multiple
 183  *      watches registered on the same file using different file_obj_t
 184  *      structure pointer. With the help of the FEM(File Event Monitoring)
 185  *      hooks, the file's vnode ops are intercepted and relevant events
 186  *      delivered. The port_dissociate() function is used to de-register a
 187  *      file events monitor on a file. When the specified file is
 188  *      removed/renamed, the file events watch/monitor is automatically
 189  *      removed.
 190  *
 191  * EVENT DELIVERY / RETRIEVING EVENTS
 192  * Events remain in the port queue until:
 193  * - the application uses port_get() or port_getn() to retrieve events,
 194  * - the event source cancel the event,
 195  * - the event port is closed or
 196  * - the process exits.
 197  * The maximal number of events in a port queue is the maximal number
 198  * of event slots/structures which can be allocated by event sources.
 199  * The allocation of event slots/structures is controlled by the resource
 200  * control: process.port-max-events.
 201  * The port_get() function retrieves a single event and the port_getn()
 202  * function retrieves a list of events.
 203  * Events are classified as shareable and non-shareable events across processes.
 204  * Non-shareable events are invisible for the port_get(n)() functions of
 205  * processes other than the owner of the event.
 206  *    Shareable event types are:
 207  *    PORT_SOURCE_USER events
 208  *      This type of event is unconditionally shareable and without
 209  *      limitations. If the parent process sends a user event and closes
 210  *      the port afterwards, the event remains in the port and the child
 211  *      process will still be able to retrieve the user event.
 212  *    PORT_SOURCE_ALERT events
 213  *      This type of event is shareable between processes.
 214  *      Limitation:     The alert mode of the port is removed if the owner
 215  *                      (process which set the port in alert mode) of the
 216  *                      alert event closes the port.
 217  *    PORT_SOURCE_FD events
 218  *      This type of event is conditional shareable between processes.
 219  *      After fork(2) all forked file descriptors are shareable between
 220  *      the processes. The child process is allowed to retrieve events
 221  *      from the associated file descriptors and it can also re-associate
 222  *      the fd with the port.
 223  *      Limitations:    The child process is not allowed to dissociate
 224  *                      the file descriptor from the port. Only the
 225  *                      owner (process) of the association is allowed to
 226  *                      dissociate the file descriptor from the port.
 227  *                      If the owner of the association closes the port
 228  *                      the association will be removed.
 229  *    PORT_SOURCE_AIO events
 230  *      This type of event is not shareable between processes.
 231  *    PORT_SOURCE_TIMER events
 232  *      This type of event is not shareable between processes.
 233  *    PORT_SOURCE_FILE events
 234  *      This type of event is not shareable between processes.
 235  *
 236  * FORK BEHAVIOUR
 237  * On fork(2) the child process inherits all opened file descriptors from
 238  * the parent process. This is also valid for port file descriptors.
 239  * Associated file descriptors with a port maintain the association across the
 240  * fork(2). It means, the child process gets full access to the port and
 241  * it can retrieve events from all common associated file descriptors.
 242  * Events of file descriptors created and associated with a port after the
 243  * fork(2) are non-shareable and can only be retrieved by the same process.
 244  *
 245  * If the parent or the child process closes an exported port (using fork(2)
 246  * or I_SENDFD) all the file descriptors associated with the port by the
 247  * process will be dissociated from the port. Events of dissociated file
 248  * descriptors as well as all non-shareable events will be discarded.
 249  * The other process can continue working with the port as usual.
 250  *
 251  * CLOSING A PORT
 252  * close(2) has to be used to close a port. See FORK BEHAVIOUR for details.
 253  *
 254  * PORT EVENT STRUCTURES
 255  * The global control structure of the event ports framework is port_control_t.
 256  * port_control_t keeps track of the number of created ports in the system.
 257  * The cache of the port event structures is also located in port_control_t.
 258  *
 259  * On port_create() the vnode and the portfs node is also created.
 260  * The portfs node is represented by the port_t structure.
 261  * The port_t structure manages all port specific tasks:
 262  * - management of resource control values
 263  * - port VOP_POLL interface
 264  * - creation time
 265  * - uid and gid of the port
 266  *
 267  * The port_t structure contains the port_queue_t structure.
 268  * The port_queue_t structure contains all the data necessary for the
 269  * queue management:
 270  * - locking
 271  * - condition variables
 272  * - event counters
 273  * - submitted events   (represented by port_kevent_t structures)
 274  * - threads waiting for event delivery (check portget_t structure)
 275  * - PORT_SOURCE_FD cache       (managed by the port_fdcache_t structure)
 276  * - event source management (managed by the port_source_t structure)
 277  * - alert mode management      (check port_alert_t structure)
 278  *
 279  * EVENT MANAGEMENT
 280  * The event port file system creates a kmem_cache for internal allocation of
 281  * event port structures.
 282  *
 283  * 1. Event source association with a port:
 284  * The first step to do for event sources is to get associated with a port
 285  * using the port_associate_ksource() function or adding an entry to the
 286  * port_ksource_tab[]. An event source can get dissociated from a port
 287  * using the port_dissociate_ksource() function. An entry in the
 288  * port_ksource_tab[] implies that the source will be associated
 289  * automatically with every new created port.
 290  * The event source can deliver a callback function, which is used by the
 291  * port to notify the event source about close(2). The idea is that
 292  * in such a case the event source should free all allocated resources
 293  * and it must return to the port all allocated slots/structures.
 294  * The port_close() function will wait until all allocated event
 295  * structures/slots are returned to the port.
 296  * The callback function is not necessary when the event source does not
 297  * maintain local resources, a second condition is that the event source
 298  * can guarantee that allocated event slots will be returned without
 299  * delay to the port (it will not block and sleep somewhere).
 300  *
 301  * 2. Reservation of an event slot / event structure
 302  * The event port reliability is based on the reservation of an event "slot"
 303  * (allocation of an event structure) by the event source as part of the
 304  * application call. If the maximal number of event slots is exhausted then
 305  * the event source can return a corresponding error code to the application.
 306  *
 307  * The port_alloc_event() function has to be used by event sources to
 308  * allocate an event slot (reserve an event structure). The port_alloc_event()
 309  * doesn not block and it will return a 0 value on success or an error code
 310  * if it fails.
 311  * An argument of port_alloc_event() is a flag which determines the behavior
 312  * of the event after it was delivered to the application:
 313  * PORT_ALLOC_DEFAULT   : event slot becomes free after delivery to the
 314  *                        application.
 315  * PORT_ALLOC_PRIVATE   : event slot remains under the control of the event
 316  *                        source. This kind of slots can not be used for
 317  *                        event delivery and should only be used internally
 318  *                        by the event source.
 319  * PORT_KEV_CACHED      : event slot remains under the control of an event
 320  *                        port cache. It does not become free after delivery
 321  *                        to the application.
 322  * PORT_ALLOC_SCACHED   : event slot remains under the control of the event
 323  *                        source. The event source takes the control over
 324  *                        the slot after the event is delivered to the
 325  *                        application.
 326  *
 327  * 3. Delivery of events to the event port
 328  * Earlier allocated event structure/slot has to be used to deliver
 329  * event data to the port. Event source has to use the function
 330  * port_send_event(). The single argument is a pointer to the previously
 331  * reserved event structure/slot.
 332  * The portkev_events field of the port_kevent_t structure can be updated/set
 333  * in two ways:
 334  * 1. using the port_set_event() function, or
 335  * 2. updating the portkev_events field out of the callback function:
 336  *    The event source can deliver a callback function to the port as an
 337  *    argument of port_init_event().
 338  *    One of the arguments of the callback function is a pointer to the
 339  *    events field, which will be delivered to the application.
 340  *    (see Delivery of events to the application).
 341  * Event structures/slots can be delivered to the event port only one time,
 342  * they remain blocked until the data is delivered to the application and the
 343  * slot becomes free or it is delivered back to the event source
 344  * (PORT_ALLOC_SCACHED). The activation of the callback function mentioned above
 345  * is at the same time the indicator for the event source that the event
 346  * structure/slot is free for reuse.
 347  *
 348  * 4. Delivery of events to the application
 349  * The events structures/slots delivered by event sources remain in the
 350  * port queue until they are retrieved by the application or the port
 351  * is closed (exit(2) also closes all opened file descriptors)..
 352  * The application uses port_get() or port_getn() to retrieve events from
 353  * a port. port_get() retrieves a single event structure/slot and port_getn()
 354  * retrieves a list of event structures/slots.
 355  * Both functions are able to poll for events and return immediately or they
 356  * can specify a timeout value.
 357  * Before the events are delivered to the application they are moved to a
 358  * second temporary internal queue. The idea is to avoid lock collisions or
 359  * contentions of the global queue lock.
 360  * The global queue lock is used every time when an event source delivers
 361  * new events to the port.
 362  * The port_get() and port_getn() functions
 363  * a) retrieve single events from the temporary queue,
 364  * b) prepare the data to be passed to the application memory,
 365  * c) activate the callback function of the event sources:
 366  *    - to get the latest event data,
 367  *    - the event source can free all allocated resources associated with the
 368  *      current event,
 369  *    - the event source can re-use the current event slot/structure
 370  *    - the event source can deny the delivery of the event to the application
 371  *      (e.g. because of the wrong process).
 372  * d) put the event back to the temporary queue if the event delivery was denied
 373  * e) repeat a) until d) as long as there are events in the queue and
 374  *    there is enough user space available.
 375  *
 376  * The loop described above could block for a very long time the global mutex,
 377  * to avoid that a second mutex was introduced to synchronized concurrent
 378  * threads accessing the temporary queue.
 379  */
 380 
 381 static int64_t portfs(int, uintptr_t, uintptr_t, uintptr_t, uintptr_t,
 382     uintptr_t);
 383 
 384 static struct sysent port_sysent = {
 385         6,
 386         SE_ARGC | SE_64RVAL | SE_NOUNLOAD,
 387         (int (*)())(uintptr_t)portfs,
 388 };
 389 
 390 static struct modlsys modlsys = {
 391         &mod_syscallops, "event ports", &port_sysent
 392 };
 393 
 394 #ifdef _SYSCALL32_IMPL
 395 
 396 static int64_t
 397 portfs32(uint32_t arg1, int32_t arg2, uint32_t arg3, uint32_t arg4,
 398     uint32_t arg5, uint32_t arg6);
 399 
 400 static struct sysent port_sysent32 = {
 401         6,
 402         SE_ARGC | SE_64RVAL | SE_NOUNLOAD,
 403         (int (*)())(uintptr_t)portfs32,
 404 };
 405 
 406 static struct modlsys modlsys32 = {
 407         &mod_syscallops32,
 408         "32-bit event ports syscalls",
 409         &port_sysent32
 410 };
 411 #endif  /* _SYSCALL32_IMPL */
 412 
 413 static struct modlinkage modlinkage = {
 414         MODREV_1,
 415         &modlsys,
 416 #ifdef _SYSCALL32_IMPL
 417         &modlsys32,
 418 #endif
 419         NULL
 420 };
 421 
 422 port_kstat_t port_kstat = {
 423         { "ports",      KSTAT_DATA_UINT32 }
 424 };
 425 
 426 dev_t   portdev;
 427 struct  vnodeops *port_vnodeops;
 428 struct  vfs port_vfs;
 429 
 430 extern  rctl_hndl_t rc_process_portev;
 431 extern  rctl_hndl_t rc_project_portids;
 432 extern  void aio_close_port(void *, int, pid_t, int);
 433 
 434 /*
 435  * This table contains a list of event sources which need a static
 436  * association with a port (every port).
 437  * The last NULL entry in the table is required to detect "end of table".
 438  */
 439 struct port_ksource port_ksource_tab[] = {
 440         {PORT_SOURCE_AIO, aio_close_port, NULL, NULL},
 441         {0, NULL, NULL, NULL}
 442 };
 443 
 444 /* local functions */
 445 static int port_getn(port_t *, port_event_t *, uint_t, uint_t *,
 446     port_gettimer_t *);
 447 static int port_sendn(int [], int [], uint_t, int, void *, uint_t *);
 448 static int port_alert(port_t *, int, int, void *);
 449 static int port_dispatch_event(port_t *, int, int, int, uintptr_t, void *);
 450 static int port_send(port_t *, int, int, void *);
 451 static int port_create(int *);
 452 static int port_get_alert(port_alert_t *, port_event_t *);
 453 static int port_copy_event(port_event_t *, port_kevent_t *, list_t *);
 454 static int *port_errorn(int *, int, int, int);
 455 static int port_noshare(void *, int *, pid_t, int, void *);
 456 static int port_get_timeout(timespec_t *, timespec_t *, timespec_t **, int *,
 457     int);
 458 static void port_init(port_t *);
 459 static void port_remove_alert(port_queue_t *);
 460 static void port_add_ksource_local(port_t *, port_ksource_t *);
 461 static void port_check_return_cond(port_queue_t *);
 462 static void port_dequeue_thread(port_queue_t *, portget_t *);
 463 static portget_t *port_queue_thread(port_queue_t *, uint_t);
 464 static void port_kstat_init(void);
 465 
 466 #ifdef  _SYSCALL32_IMPL
 467 static int port_copy_event32(port_event32_t *, port_kevent_t *, list_t *);
 468 #endif
 469 
 470 int
 471 _init(void)
 472 {
 473         static const fs_operation_def_t port_vfsops_template[] = {
 474                 NULL, NULL
 475         };
 476         extern const    fs_operation_def_t port_vnodeops_template[];
 477         vfsops_t        *port_vfsops;
 478         int             error;
 479         major_t         major;
 480 
 481         if ((major = getudev()) == (major_t)-1)
 482                 return (ENXIO);
 483         portdev = makedevice(major, 0);
 484 
 485         /* Create a dummy vfs */
 486         error = vfs_makefsops(port_vfsops_template, &port_vfsops);
 487         if (error) {
 488                 cmn_err(CE_WARN, "port init: bad vfs ops");
 489                 return (error);
 490         }
 491         vfs_setops(&port_vfs, port_vfsops);
 492         port_vfs.vfs_flag = VFS_RDONLY;
 493         port_vfs.vfs_dev = portdev;
 494         vfs_make_fsid(&(port_vfs.vfs_fsid), portdev, 0);
 495 
 496         error = vn_make_ops("portfs", port_vnodeops_template, &port_vnodeops);
 497         if (error) {
 498                 vfs_freevfsops(port_vfsops);
 499                 cmn_err(CE_WARN, "port init: bad vnode ops");
 500                 return (error);
 501         }
 502 
 503         mutex_init(&port_control.pc_mutex, NULL, MUTEX_DEFAULT, NULL);
 504         port_control.pc_nents = 0;      /* number of active ports */
 505 
 506         /* create kmem_cache for port event structures */
 507         port_control.pc_cache = kmem_cache_create("port_cache",
 508             sizeof (port_kevent_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
 509 
 510         port_kstat_init();              /* init port kstats */
 511         return (mod_install(&modlinkage));
 512 }
 513 
 514 int
 515 _info(struct modinfo *modinfop)
 516 {
 517         return (mod_info(&modlinkage, modinfop));
 518 }
 519 
 520 /*
 521  * System call wrapper for all port related system calls from 32-bit programs.
 522  */
 523 #ifdef _SYSCALL32_IMPL
 524 static int64_t
 525 portfs32(uint32_t opcode, int32_t a0, uint32_t a1, uint32_t a2, uint32_t a3,
 526     uint32_t a4)
 527 {
 528         int64_t error;
 529 
 530         switch (opcode & PORT_CODE_MASK) {
 531         case PORT_GET:
 532                 error = portfs(PORT_GET, a0, a1, (int)a2, (int)a3, a4);
 533                 break;
 534         case PORT_SENDN:
 535                 error = portfs(opcode, (uint32_t)a0, a1, a2, a3, a4);
 536                 break;
 537         default:
 538                 error = portfs(opcode, a0, a1, a2, a3, a4);
 539                 break;
 540         }
 541         return (error);
 542 }
 543 #endif  /* _SYSCALL32_IMPL */
 544 
 545 /*
 546  * System entry point for port functions.
 547  * a0 is a port file descriptor (except for PORT_SENDN and PORT_CREATE).
 548  * The libc uses PORT_SYS_NOPORT in functions which do not deliver a
 549  * port file descriptor as first argument.
 550  */
 551 static int64_t
 552 portfs(int opcode, uintptr_t a0, uintptr_t a1, uintptr_t a2, uintptr_t a3,
 553     uintptr_t a4)
 554 {
 555         rval_t          r;
 556         port_t          *pp;
 557         int             error = 0;
 558         uint_t          nget;
 559         file_t          *fp;
 560         port_gettimer_t port_timer;
 561 
 562         r.r_vals = 0;
 563         if (opcode & PORT_SYS_NOPORT) {
 564                 opcode &= PORT_CODE_MASK;
 565                 if (opcode == PORT_SENDN) {
 566                         error = port_sendn((int *)a0, (int *)a1, (uint_t)a2,
 567                             (int)a3, (void *)a4, (uint_t *)&r.r_val1);
 568                         if (error && (error != EIO))
 569                                 return ((int64_t)set_errno(error));
 570                         return (r.r_vals);
 571                 }
 572 
 573                 if (opcode == PORT_CREATE) {
 574                         error = port_create(&r.r_val1);
 575                         if (error)
 576                                 return ((int64_t)set_errno(error));
 577                         return (r.r_vals);
 578                 }
 579         }
 580 
 581         /* opcodes using port as first argument (a0) */
 582 
 583         if ((fp = getf((int)a0)) == NULL)
 584                 return ((uintptr_t)set_errno(EBADF));
 585 
 586         if (fp->f_vnode->v_type != VPORT) {
 587                 releasef((int)a0);
 588                 return ((uintptr_t)set_errno(EBADFD));
 589         }
 590 
 591         pp = VTOEP(fp->f_vnode);
 592 
 593         switch (opcode & PORT_CODE_MASK) {
 594         case    PORT_GET:
 595         {
 596                 /* see PORT_GETN description */
 597                 struct  timespec timeout;
 598 
 599                 port_timer.pgt_flags = PORTGET_ONE;
 600                 port_timer.pgt_loop = 0;
 601                 port_timer.pgt_rqtp = NULL;
 602                 if (a4 != 0) {
 603                         port_timer.pgt_timeout = &timeout;
 604                         timeout.tv_sec = (time_t)a2;
 605                         timeout.tv_nsec = (long)a3;
 606                 } else {
 607                         port_timer.pgt_timeout = NULL;
 608                 }
 609                 do {
 610                         nget = 1;
 611                         error = port_getn(pp, (port_event_t *)a1, 1,
 612                             (uint_t *)&nget, &port_timer);
 613                 } while (nget == 0 && error == 0 && port_timer.pgt_loop);
 614                 break;
 615         }
 616         case    PORT_GETN:
 617         {
 618                 /*
 619                  * port_getn() can only retrieve own or shareable events from
 620                  * other processes. The port_getn() function remains in the
 621                  * kernel until own or shareable events are available or the
 622                  * timeout elapses.
 623                  */
 624                 port_timer.pgt_flags = 0;
 625                 port_timer.pgt_loop = 0;
 626                 port_timer.pgt_rqtp = NULL;
 627                 port_timer.pgt_timeout = (struct timespec *)a4;
 628                 do {
 629                         nget = a3;
 630                         error = port_getn(pp, (port_event_t *)a1, (uint_t)a2,
 631                             (uint_t *)&nget, &port_timer);
 632                 } while (nget == 0 && error == 0 && port_timer.pgt_loop);
 633                 r.r_val1 = nget;
 634                 r.r_val2 = error;
 635                 releasef((int)a0);
 636                 if (error && error != ETIME)
 637                         return ((int64_t)set_errno(error));
 638                 return (r.r_vals);
 639         }
 640         case    PORT_ASSOCIATE:
 641         {
 642                 switch ((int)a1) {
 643                 case PORT_SOURCE_FD:
 644                         error = port_associate_fd(pp, (int)a1, (uintptr_t)a2,
 645                             (int)a3, (void *)a4);
 646                         break;
 647                 case PORT_SOURCE_FILE:
 648                         error = port_associate_fop(pp, (int)a1, (uintptr_t)a2,
 649                             (int)a3, (void *)a4);
 650                         break;
 651                 default:
 652                         error = EINVAL;
 653                         break;
 654                 }
 655                 break;
 656         }
 657         case    PORT_SEND:
 658         {
 659                 /* user-defined events */
 660                 error = port_send(pp, PORT_SOURCE_USER, (int)a1, (void *)a2);
 661                 break;
 662         }
 663         case    PORT_DISPATCH:
 664         {
 665                 /*
 666                  * library events, blocking
 667                  * Only events of type PORT_SOURCE_AIO or PORT_SOURCE_MQ
 668                  * are currently allowed.
 669                  */
 670                 if ((int)a1 != PORT_SOURCE_AIO && (int)a1 != PORT_SOURCE_MQ) {
 671                         error = EINVAL;
 672                         break;
 673                 }
 674                 error = port_dispatch_event(pp, (int)opcode, (int)a1, (int)a2,
 675                     (uintptr_t)a3, (void *)a4);
 676                 break;
 677         }
 678         case    PORT_DISSOCIATE:
 679         {
 680                 switch ((int)a1) {
 681                 case PORT_SOURCE_FD:
 682                         error = port_dissociate_fd(pp, (uintptr_t)a2);
 683                         break;
 684                 case PORT_SOURCE_FILE:
 685                         error = port_dissociate_fop(pp, (uintptr_t)a2);
 686                         break;
 687                 default:
 688                         error = EINVAL;
 689                         break;
 690                 }
 691                 break;
 692         }
 693         case    PORT_ALERT:
 694         {
 695                 if ((int)a2)    /* a2 = events */
 696                         error = port_alert(pp, (int)a1, (int)a2, (void *)a3);
 697                 else
 698                         port_remove_alert(&pp->port_queue);
 699                 break;
 700         }
 701         default:
 702                 error = EINVAL;
 703                 break;
 704         }
 705 
 706         releasef((int)a0);
 707         if (error)
 708                 return ((int64_t)set_errno(error));
 709         return (r.r_vals);
 710 }
 711 
 712 /*
 713  * System call to create a port.
 714  *
 715  * The port_create() function creates a vnode of type VPORT per port.
 716  * The port control data is associated with the vnode as vnode private data.
 717  * The port_create() function returns an event port file descriptor.
 718  */
 719 static int
 720 port_create(int *fdp)
 721 {
 722         port_t          *pp;
 723         vnode_t         *vp;
 724         struct file     *fp;
 725         proc_t          *p = curproc;
 726 
 727         /* initialize vnode and port private data */
 728         pp = kmem_zalloc(sizeof (port_t), KM_SLEEP);
 729 
 730         pp->port_vnode = vn_alloc(KM_SLEEP);
 731         vp = EPTOV(pp);
 732         vn_setops(vp, port_vnodeops);
 733         vp->v_type = VPORT;
 734         vp->v_vfsp = &port_vfs;
 735         vp->v_data = (caddr_t)pp;
 736 
 737         mutex_enter(&port_control.pc_mutex);
 738         /*
 739          * Retrieve the maximal number of event ports allowed per system from
 740          * the resource control: project.port-max-ids.
 741          */
 742         mutex_enter(&p->p_lock);
 743         if (rctl_test(rc_project_portids, p->p_task->tk_proj->kpj_rctls, p,
 744             port_control.pc_nents + 1, RCA_SAFE) & RCT_DENY) {
 745                 mutex_exit(&p->p_lock);
 746                 vn_free(vp);
 747                 kmem_free(pp, sizeof (port_t));
 748                 mutex_exit(&port_control.pc_mutex);
 749                 return (EAGAIN);
 750         }
 751 
 752         /*
 753          * Retrieve the maximal number of events allowed per port from
 754          * the resource control: process.port-max-events.
 755          */
 756         pp->port_max_events = rctl_enforced_value(rc_process_portev,
 757             p->p_rctls, p);
 758         mutex_exit(&p->p_lock);
 759 
 760         /* allocate a new user file descriptor and a file structure */
 761         if (falloc(vp, 0, &fp, fdp)) {
 762                 /*
 763                  * If the file table is full, free allocated resources.
 764                  */
 765                 vn_free(vp);
 766                 kmem_free(pp, sizeof (port_t));
 767                 mutex_exit(&port_control.pc_mutex);
 768                 return (EMFILE);
 769         }
 770 
 771         mutex_exit(&fp->f_tlock);
 772 
 773         pp->port_fd = *fdp;
 774         port_control.pc_nents++;
 775         p->p_portcnt++;
 776         port_kstat.pks_ports.value.ui32++;
 777         mutex_exit(&port_control.pc_mutex);
 778 
 779         /* initializes port private data */
 780         port_init(pp);
 781         /* set user file pointer */
 782         setf(*fdp, fp);
 783         return (0);
 784 }
 785 
 786 /*
 787  * port_init() initializes event port specific data
 788  */
 789 static void
 790 port_init(port_t *pp)
 791 {
 792         port_queue_t    *portq;
 793         port_ksource_t  *pks;
 794 
 795         mutex_init(&pp->port_mutex, NULL, MUTEX_DEFAULT, NULL);
 796         portq = &pp->port_queue;
 797         mutex_init(&portq->portq_mutex, NULL, MUTEX_DEFAULT, NULL);
 798         pp->port_flags |= PORT_INIT;
 799 
 800         /*
 801          * If it is not enough memory available to satisfy a user
 802          * request using a single port_getn() call then port_getn()
 803          * will reduce the size of the list to PORT_MAX_LIST.
 804          */
 805         pp->port_max_list = port_max_list;
 806 
 807         /* Set timestamp entries required for fstat(2) requests */
 808         gethrestime(&pp->port_ctime);
 809         pp->port_uid = crgetuid(curproc->p_cred);
 810         pp->port_gid = crgetgid(curproc->p_cred);
 811 
 812         /* initialize port queue structs */
 813         list_create(&portq->portq_list, sizeof (port_kevent_t),
 814             offsetof(port_kevent_t, portkev_node));
 815         list_create(&portq->portq_get_list, sizeof (port_kevent_t),
 816             offsetof(port_kevent_t, portkev_node));
 817         portq->portq_flags = 0;
 818         pp->port_pid = curproc->p_pid;
 819 
 820         /* Allocate cache skeleton for PORT_SOURCE_FD events */
 821         portq->portq_pcp = kmem_zalloc(sizeof (port_fdcache_t), KM_SLEEP);
 822         mutex_init(&portq->portq_pcp->pc_lock, NULL, MUTEX_DEFAULT, NULL);
 823 
 824         /*
 825          * Allocate cache skeleton for association of event sources.
 826          */
 827         mutex_init(&portq->portq_source_mutex, NULL, MUTEX_DEFAULT, NULL);
 828         portq->portq_scache = kmem_zalloc(
 829             PORT_SCACHE_SIZE * sizeof (port_source_t *), KM_SLEEP);
 830 
 831         /*
 832          * pre-associate some kernel sources with this port.
 833          * The pre-association is required to create port_source_t
 834          * structures for object association.
 835          * Some sources can not get associated with a port before the first
 836          * object association is requested. Another reason to pre_associate
 837          * a particular source with a port is because of performance.
 838          */
 839 
 840         for (pks = port_ksource_tab; pks->pks_source != 0; pks++)
 841                 port_add_ksource_local(pp, pks);
 842 }
 843 
 844 /*
 845  * The port_add_ksource_local() function is being used to associate
 846  * event sources with every new port.
 847  * The event sources need to be added to port_ksource_tab[].
 848  */
 849 static void
 850 port_add_ksource_local(port_t *pp, port_ksource_t *pks)
 851 {
 852         port_source_t   *pse;
 853         port_source_t   **ps;
 854 
 855         mutex_enter(&pp->port_queue.portq_source_mutex);
 856         ps = &pp->port_queue.portq_scache[PORT_SHASH(pks->pks_source)];
 857         for (pse = *ps; pse != NULL; pse = pse->portsrc_next) {
 858                 if (pse->portsrc_source == pks->pks_source)
 859                         break;
 860         }
 861 
 862         if (pse == NULL) {
 863                 /* associate new source with the port */
 864                 pse = kmem_zalloc(sizeof (port_source_t), KM_SLEEP);
 865                 pse->portsrc_source = pks->pks_source;
 866                 pse->portsrc_close = pks->pks_close;
 867                 pse->portsrc_closearg = pks->pks_closearg;
 868                 pse->portsrc_cnt = 1;
 869 
 870                 pks->pks_portsrc = pse;
 871                 if (*ps != NULL)
 872                         pse->portsrc_next = (*ps)->portsrc_next;
 873                 *ps = pse;
 874         }
 875         mutex_exit(&pp->port_queue.portq_source_mutex);
 876 }
 877 
 878 /*
 879  * The port_send() function sends an event of type "source" to a
 880  * port. This function is non-blocking. An event can be sent to
 881  * a port as long as the number of events per port does not achieve the
 882  * maximal allowed number of events. The max. number of events per port is
 883  * defined by the resource control process.max-port-events.
 884  * This function is used by the port library function port_send()
 885  * and port_dispatch(). The port_send(3c) function is part of the
 886  * event ports API and submits events of type PORT_SOURCE_USER. The
 887  * port_dispatch() function is project private and it is used by library
 888  * functions to submit events of other types than PORT_SOURCE_USER
 889  * (e.g. PORT_SOURCE_AIO).
 890  */
 891 static int
 892 port_send(port_t *pp, int source, int events, void *user)
 893 {
 894         port_kevent_t   *pev;
 895         int             error;
 896 
 897         error = port_alloc_event_local(pp, source, PORT_ALLOC_DEFAULT, &pev);
 898         if (error)
 899                 return (error);
 900 
 901         pev->portkev_object = 0;
 902         pev->portkev_events = events;
 903         pev->portkev_user = user;
 904         pev->portkev_callback = NULL;
 905         pev->portkev_arg = NULL;
 906         pev->portkev_flags = 0;
 907 
 908         port_send_event(pev);
 909         return (0);
 910 }
 911 
 912 /*
 913  * The port_noshare() function returns 0 if the current event was generated
 914  * by the same process. Otherwise is returns a value other than 0 and the
 915  * event should not be delivered to the current processe.
 916  * The port_noshare() function is normally used by the port_dispatch()
 917  * function. The port_dispatch() function is project private and can only be
 918  * used within the event port project.
 919  * Currently the libaio uses the port_dispatch() function to deliver events
 920  * of types PORT_SOURCE_AIO.
 921  */
 922 /* ARGSUSED */
 923 static int
 924 port_noshare(void *arg, int *events, pid_t pid, int flag, void *evp)
 925 {
 926         if (flag == PORT_CALLBACK_DEFAULT && curproc->p_pid != pid)
 927                 return (1);
 928         return (0);
 929 }
 930 
 931 /*
 932  * The port_dispatch_event() function is project private and it is used by
 933  * libraries involved in the project to deliver events to the port.
 934  * port_dispatch will sleep and wait for enough resources to satisfy the
 935  * request, if necessary.
 936  * The library can specify if the delivered event is shareable with other
 937  * processes (see PORT_SYS_NOSHARE flag).
 938  */
 939 static int
 940 port_dispatch_event(port_t *pp, int opcode, int source, int events,
 941     uintptr_t object, void *user)
 942 {
 943         port_kevent_t   *pev;
 944         int             error;
 945 
 946         error = port_alloc_event_block(pp, source, PORT_ALLOC_DEFAULT, &pev);
 947         if (error)
 948                 return (error);
 949 
 950         pev->portkev_object = object;
 951         pev->portkev_events = events;
 952         pev->portkev_user = user;
 953         pev->portkev_arg = NULL;
 954         if (opcode & PORT_SYS_NOSHARE) {
 955                 pev->portkev_flags = PORT_KEV_NOSHARE;
 956                 pev->portkev_callback = port_noshare;
 957         } else {
 958                 pev->portkev_flags = 0;
 959                 pev->portkev_callback = NULL;
 960         }
 961 
 962         port_send_event(pev);
 963         return (0);
 964 }
 965 
 966 
 967 /*
 968  * The port_sendn() function is the kernel implementation of the event
 969  * port API function port_sendn(3c).
 970  * This function is able to send an event to a list of event ports.
 971  */
 972 static int
 973 port_sendn(int ports[], int errors[], uint_t nent, int events, void *user,
 974     uint_t *nget)
 975 {
 976         port_kevent_t   *pev;
 977         int             errorcnt = 0;
 978         int             error = 0;
 979         int             count;
 980         int             port;
 981         int             *plist;
 982         int             *elist = NULL;
 983         file_t          *fp;
 984         port_t          *pp;
 985 
 986         if (nent == 0 || nent > port_max_list)
 987                 return (EINVAL);
 988 
 989         plist = kmem_alloc(nent * sizeof (int), KM_SLEEP);
 990         if (copyin((void *)ports, plist, nent * sizeof (int))) {
 991                 kmem_free(plist, nent * sizeof (int));
 992                 return (EFAULT);
 993         }
 994 
 995         /*
 996          * Scan the list for event port file descriptors and send the
 997          * attached user event data embedded in a event of type
 998          * PORT_SOURCE_USER to every event port in the list.
 999          * If a list entry is not a valid event port then the corresponding
1000          * error code will be stored in the errors[] list with the same
1001          * list offset as in the ports[] list.
1002          */
1003 
1004         for (count = 0; count < nent; count++) {
1005                 port = plist[count];
1006                 if ((fp = getf(port)) == NULL) {
1007                         elist = port_errorn(elist, nent, EBADF, count);
1008                         errorcnt++;
1009                         continue;
1010                 }
1011 
1012                 pp = VTOEP(fp->f_vnode);
1013                 if (fp->f_vnode->v_type != VPORT) {
1014                         releasef(port);
1015                         elist = port_errorn(elist, nent, EBADFD, count);
1016                         errorcnt++;
1017                         continue;
1018                 }
1019 
1020                 error = port_alloc_event_local(pp, PORT_SOURCE_USER,
1021                     PORT_ALLOC_DEFAULT, &pev);
1022                 if (error) {
1023                         releasef(port);
1024                         elist = port_errorn(elist, nent, error, count);
1025                         errorcnt++;
1026                         continue;
1027                 }
1028 
1029                 pev->portkev_object = 0;
1030                 pev->portkev_events = events;
1031                 pev->portkev_user = user;
1032                 pev->portkev_callback = NULL;
1033                 pev->portkev_arg = NULL;
1034                 pev->portkev_flags = 0;
1035 
1036                 port_send_event(pev);
1037                 releasef(port);
1038         }
1039         if (errorcnt) {
1040                 error = EIO;
1041                 if (copyout(elist, (void *)errors, nent * sizeof (int)))
1042                         error = EFAULT;
1043                 kmem_free(elist, nent * sizeof (int));
1044         }
1045         *nget = nent - errorcnt;
1046         kmem_free(plist, nent * sizeof (int));
1047         return (error);
1048 }
1049 
1050 static int *
1051 port_errorn(int *elist, int nent, int error, int index)
1052 {
1053         if (elist == NULL)
1054                 elist = kmem_zalloc(nent * sizeof (int), KM_SLEEP);
1055         elist[index] = error;
1056         return (elist);
1057 }
1058 
1059 /*
1060  * port_alert()
1061  * The port_alert() funcion is a high priority event and it is always set
1062  * on top of the queue. It is also delivered as single event.
1063  * flags:
1064  *      - SET   :overwrite current alert data
1065  *      - UPDATE:set alert data or return EBUSY if alert mode is already set
1066  *
1067  * - set the ALERT flag
1068  * - wakeup all sleeping threads
1069  */
1070 static int
1071 port_alert(port_t *pp, int flags, int events, void *user)
1072 {
1073         port_queue_t    *portq;
1074         portget_t       *pgetp;
1075         port_alert_t    *pa;
1076 
1077         if ((flags & PORT_ALERT_INVALID) == PORT_ALERT_INVALID)
1078                 return (EINVAL);
1079 
1080         portq = &pp->port_queue;
1081         pa = &portq->portq_alert;
1082         mutex_enter(&portq->portq_mutex);
1083 
1084         /* check alert conditions */
1085         if (flags == PORT_ALERT_UPDATE) {
1086                 if (portq->portq_flags & PORTQ_ALERT) {
1087                         mutex_exit(&portq->portq_mutex);
1088                         return (EBUSY);
1089                 }
1090         }
1091 
1092         /*
1093          * Store alert data in the port to be delivered to threads
1094          * which are using port_get(n) to retrieve events.
1095          */
1096 
1097         portq->portq_flags |= PORTQ_ALERT;
1098         pa->portal_events = events;          /* alert info */
1099         pa->portal_pid = curproc->p_pid;  /* process owner */
1100         pa->portal_object = 0;                       /* no object */
1101         pa->portal_user = user;                      /* user alert data */
1102 
1103         /* alert and deliver alert data to waiting threads */
1104         pgetp = portq->portq_thread;
1105         if (pgetp == NULL) {
1106                 /* no threads waiting for events */
1107                 mutex_exit(&portq->portq_mutex);
1108                 return (0);
1109         }
1110 
1111         /*
1112          * Set waiting threads in alert mode (PORTGET_ALERT)..
1113          * Every thread waiting for events already allocated a portget_t
1114          * structure to sleep on.
1115          * The port alert arguments are stored in the portget_t structure.
1116          * The PORTGET_ALERT flag is set to indicate the thread to return
1117          * immediately with the alert event.
1118          */
1119         do {
1120                 if ((pgetp->portget_state & PORTGET_ALERT) == 0) {
1121                         pa = &pgetp->portget_alert;
1122                         pa->portal_events = events;
1123                         pa->portal_object = 0;
1124                         pa->portal_user = user;
1125                         pgetp->portget_state |= PORTGET_ALERT;
1126                         cv_signal(&pgetp->portget_cv);
1127                 }
1128         } while ((pgetp = pgetp->portget_next) != portq->portq_thread);
1129         mutex_exit(&portq->portq_mutex);
1130         return (0);
1131 }
1132 
1133 /*
1134  * Clear alert state of the port
1135  */
1136 static void
1137 port_remove_alert(port_queue_t *portq)
1138 {
1139         mutex_enter(&portq->portq_mutex);
1140         portq->portq_flags &= ~PORTQ_ALERT;
1141         mutex_exit(&portq->portq_mutex);
1142 }
1143 
1144 /*
1145  * The port_getn() function is used to retrieve events from a port.
1146  *
1147  * The port_getn() function returns immediately if there are enough events
1148  * available in the port to satisfy the request or if the port is in alert
1149  * mode (see port_alert(3c)).
1150  * The timeout argument of port_getn(3c) -which is embedded in the
1151  * port_gettimer_t structure- specifies if the system call should block or if it
1152  * should return immediately depending on the number of events available.
1153  * This function is internally used by port_getn(3c) as well as by
1154  * port_get(3c).
1155  */
1156 static int
1157 port_getn(port_t *pp, port_event_t *uevp, uint_t max, uint_t *nget,
1158     port_gettimer_t *pgt)
1159 {
1160         port_queue_t    *portq;
1161         port_kevent_t   *pev;
1162         port_kevent_t   *lev;
1163         int             error = 0;
1164         uint_t          nmax;
1165         uint_t          nevents;
1166         uint_t          eventsz;
1167         port_event_t    *kevp;
1168         list_t          *glist;
1169         uint_t          tnent;
1170         int             rval;
1171         int             blocking = -1;
1172         int             timecheck;
1173         int             flag;
1174         timespec_t      rqtime;
1175         timespec_t      *rqtp = NULL;
1176         portget_t       *pgetp;
1177         void            *results;
1178         model_t         model = get_udatamodel();
1179 
1180         flag = pgt->pgt_flags;
1181 
1182         if (*nget > max && max > 0)
1183                 return (EINVAL);
1184 
1185         portq = &pp->port_queue;
1186         mutex_enter(&portq->portq_mutex);
1187         if (max == 0) {
1188                 /*
1189                  * Return number of objects with events.
1190                  * The port_block() call is required to synchronize this
1191                  * thread with another possible thread, which could be
1192                  * retrieving events from the port queue.
1193                  */
1194                 port_block(portq);
1195                 /*
1196                  * Check if a second thread is currently retrieving events
1197                  * and it is using the temporary event queue.
1198                  */
1199                 if (portq->portq_tnent) {
1200                         /* put remaining events back to the port queue */
1201                         port_push_eventq(portq);
1202                 }
1203                 *nget = portq->portq_nent;
1204                 port_unblock(portq);
1205                 mutex_exit(&portq->portq_mutex);
1206                 return (0);
1207         }
1208 
1209         if (uevp == NULL) {
1210                 mutex_exit(&portq->portq_mutex);
1211                 return (EFAULT);
1212         }
1213         if (*nget == 0) {               /* no events required */
1214                 mutex_exit(&portq->portq_mutex);
1215                 return (0);
1216         }
1217 
1218         /* port is being closed ... */
1219         if (portq->portq_flags & PORTQ_CLOSE) {
1220                 mutex_exit(&portq->portq_mutex);
1221                 return (EBADFD);
1222         }
1223 
1224         /* return immediately if port in alert mode */
1225         if (portq->portq_flags & PORTQ_ALERT) {
1226                 error = port_get_alert(&portq->portq_alert, uevp);
1227                 if (error == 0)
1228                         *nget = 1;
1229                 mutex_exit(&portq->portq_mutex);
1230                 return (error);
1231         }
1232 
1233         portq->portq_thrcnt++;
1234 
1235         /*
1236          * Now check if the completed events satisfy the
1237          * "wait" requirements of the current thread:
1238          */
1239 
1240         if (pgt->pgt_loop) {
1241                 /*
1242                  * loop entry of same thread
1243                  * pgt_loop is set when the current thread returns
1244                  * prematurely from this function. That could happen
1245                  * when a port is being shared between processes and
1246                  * this thread could not find events to return.
1247                  * It is not allowed to a thread to retrieve non-shareable
1248                  * events generated in other processes.
1249                  * PORTQ_WAIT_EVENTS is set when a thread already
1250                  * checked the current event queue and no new events
1251                  * are added to the queue.
1252                  */
1253                 if (((portq->portq_flags & PORTQ_WAIT_EVENTS) == 0) &&
1254                     (portq->portq_nent >= *nget)) {
1255                         /* some new events arrived ...check them */
1256                         goto portnowait;
1257                 }
1258                 rqtp = pgt->pgt_rqtp;
1259                 timecheck = pgt->pgt_timecheck;
1260                 pgt->pgt_flags |= PORTGET_WAIT_EVENTS;
1261         } else {
1262                 /* check if enough events are available ... */
1263                 if (portq->portq_nent >= *nget)
1264                         goto portnowait;
1265                 /*
1266                  * There are not enough events available to satisfy
1267                  * the request, check timeout value and wait for
1268                  * incoming events.
1269                  */
1270                 error = port_get_timeout(pgt->pgt_timeout, &rqtime, &rqtp,
1271                     &blocking, flag);
1272                 if (error) {
1273                         port_check_return_cond(portq);
1274                         mutex_exit(&portq->portq_mutex);
1275                         return (error);
1276                 }
1277 
1278                 if (blocking == 0) /* don't block, check fired events */
1279                         goto portnowait;
1280 
1281                 if (rqtp != NULL) {
1282                         timespec_t      now;
1283                         timecheck = timechanged;
1284                         gethrestime(&now);
1285                         timespecadd(rqtp, &now);
1286                 }
1287         }
1288 
1289         /* enqueue thread in the list of waiting threads */
1290         pgetp = port_queue_thread(portq, *nget);
1291 
1292 
1293         /* Wait here until return conditions met */
1294         for (;;) {
1295                 if (pgetp->portget_state & PORTGET_ALERT) {
1296                         /* reap alert event and return */
1297                         error = port_get_alert(&pgetp->portget_alert, uevp);
1298                         if (error)
1299                                 *nget = 0;
1300                         else
1301                                 *nget = 1;
1302                         port_dequeue_thread(&pp->port_queue, pgetp);
1303                         portq->portq_thrcnt--;
1304                         mutex_exit(&portq->portq_mutex);
1305                         return (error);
1306                 }
1307 
1308                 /*
1309                  * Check if some other thread is already retrieving
1310                  * events (portq_getn > 0).
1311                  */
1312 
1313                 if ((portq->portq_getn  == 0) &&
1314                     ((portq)->portq_nent >= *nget) &&
1315                     (!((pgt)->pgt_flags & PORTGET_WAIT_EVENTS) ||
1316                     !((portq)->portq_flags & PORTQ_WAIT_EVENTS)))
1317                         break;
1318 
1319                 if (portq->portq_flags & PORTQ_CLOSE) {
1320                         error = EBADFD;
1321                         break;
1322                 }
1323 
1324                 rval = cv_waituntil_sig(&pgetp->portget_cv, &portq->portq_mutex,
1325                     rqtp, timecheck);
1326 
1327                 if (rval <= 0) {
1328                         error = (rval == 0) ? EINTR : ETIME;
1329                         break;
1330                 }
1331         }
1332 
1333         /* take thread out of the wait queue */
1334         port_dequeue_thread(portq, pgetp);
1335 
1336         if (error != 0 && (error == EINTR || error == EBADFD ||
1337             (error == ETIME && flag))) {
1338                 /* return without events */
1339                 port_check_return_cond(portq);
1340                 mutex_exit(&portq->portq_mutex);
1341                 return (error);
1342         }
1343 
1344 portnowait:
1345         /*
1346          * Move port event queue to a temporary event queue .
1347          * New incoming events will be continue be posted to the event queue
1348          * and they will not be considered by the current thread.
1349          * The idea is to avoid lock contentions or an often locking/unlocking
1350          * of the port queue mutex. The contention and performance degradation
1351          * could happen because:
1352          * a) incoming events use the port queue mutex to enqueue new events and
1353          * b) before the event can be delivered to the application it is
1354          *    necessary to notify the event sources about the event delivery.
1355          *    Sometimes the event sources can require a long time to return and
1356          *    the queue mutex would block incoming events.
1357          * During this time incoming events (port_send_event()) do not need
1358          * to awake threads waiting for events. Before the current thread
1359          * returns it will check the conditions to awake other waiting threads.
1360          */
1361         portq->portq_getn++; /* number of threads retrieving events */
1362         port_block(portq);      /* block other threads here */
1363         nmax = max < portq->portq_nent ? max : portq->portq_nent;
1364 
1365         if (portq->portq_tnent) {
1366                 /*
1367                  * Move remaining events from previous thread back to the
1368                  * port event queue.
1369                  */
1370                 port_push_eventq(portq);
1371         }
1372         /* move port event queue to a temporary queue */
1373         list_move_tail(&portq->portq_get_list, &portq->portq_list);
1374         glist = &portq->portq_get_list;  /* use temporary event queue */
1375         tnent = portq->portq_nent;   /* get current number of events */
1376         portq->portq_nent = 0;               /* no events in the port event queue */
1377         portq->portq_flags |= PORTQ_WAIT_EVENTS; /* detect incoming events */
1378         mutex_exit(&portq->portq_mutex);    /* event queue can be reused now */
1379 
1380         if (model == DATAMODEL_NATIVE) {
1381                 eventsz = sizeof (port_event_t);
1382                 kevp = kmem_alloc(eventsz * nmax, KM_NOSLEEP);
1383                 if (kevp == NULL) {
1384                         if (nmax > pp->port_max_list)
1385                                 nmax = pp->port_max_list;
1386                         kevp = kmem_alloc(eventsz * nmax, KM_SLEEP);
1387                 }
1388                 results = kevp;
1389                 lev = NULL;     /* start with first event in the queue */
1390                 for (nevents = 0; nevents < nmax; ) {
1391                         pev = port_get_kevent(glist, lev);
1392                         if (pev == NULL)        /* no more events available */
1393                                 break;
1394                         if (pev->portkev_flags & PORT_KEV_FREE) {
1395                                 /* Just discard event */
1396                                 list_remove(glist, pev);
1397                                 pev->portkev_flags &= ~(PORT_CLEANUP_DONE);
1398                                 if (PORT_FREE_EVENT(pev))
1399                                         port_free_event_local(pev, 0);
1400                                 tnent--;
1401                                 continue;
1402                         }
1403 
1404                         /* move event data to copyout list */
1405                         if (port_copy_event(&kevp[nevents], pev, glist)) {
1406                                 /*
1407                                  * Event can not be delivered to the
1408                                  * current process.
1409                                  */
1410                                 if (lev != NULL)
1411                                         list_insert_after(glist, lev, pev);
1412                                 else
1413                                         list_insert_head(glist, pev);
1414                                 lev = pev;  /* last checked event */
1415                         } else {
1416                                 nevents++;      /* # of events ready */
1417                         }
1418                 }
1419 #ifdef  _SYSCALL32_IMPL
1420         } else {
1421                 port_event32_t  *kevp32;
1422 
1423                 eventsz = sizeof (port_event32_t);
1424                 kevp32 = kmem_alloc(eventsz * nmax, KM_NOSLEEP);
1425                 if (kevp32 == NULL) {
1426                         if (nmax > pp->port_max_list)
1427                                 nmax = pp->port_max_list;
1428                         kevp32 = kmem_alloc(eventsz * nmax, KM_SLEEP);
1429                 }
1430                 results = kevp32;
1431                 lev = NULL;     /* start with first event in the queue */
1432                 for (nevents = 0; nevents < nmax; ) {
1433                         pev = port_get_kevent(glist, lev);
1434                         if (pev == NULL)        /* no more events available */
1435                                 break;
1436                         if (pev->portkev_flags & PORT_KEV_FREE) {
1437                                 /* Just discard event */
1438                                 list_remove(glist, pev);
1439                                 pev->portkev_flags &= ~(PORT_CLEANUP_DONE);
1440                                 if (PORT_FREE_EVENT(pev))
1441                                         port_free_event_local(pev, 0);
1442                                 tnent--;
1443                                 continue;
1444                         }
1445 
1446                         /* move event data to copyout list */
1447                         if (port_copy_event32(&kevp32[nevents], pev, glist)) {
1448                                 /*
1449                                  * Event can not be delivered to the
1450                                  * current process.
1451                                  */
1452                                 if (lev != NULL)
1453                                         list_insert_after(glist, lev, pev);
1454                                 else
1455                                         list_insert_head(glist, pev);
1456                                 lev = pev;  /* last checked event */
1457                         } else {
1458                                 nevents++;      /* # of events ready */
1459                         }
1460                 }
1461 #endif  /* _SYSCALL32_IMPL */
1462         }
1463 
1464         /*
1465          *  Remember number of remaining events in the temporary event queue.
1466          */
1467         portq->portq_tnent = tnent - nevents;
1468 
1469         /*
1470          * Work to do before return :
1471          * - push list of remaining events back to the top of the standard
1472          *   port queue.
1473          * - if this is the last thread calling port_get(n) then wakeup the
1474          *   thread waiting on close(2).
1475          * - check for a deferred cv_signal from port_send_event() and wakeup
1476          *   the sleeping thread.
1477          */
1478 
1479         mutex_enter(&portq->portq_mutex);
1480         port_unblock(portq);
1481         if (portq->portq_tnent) {
1482                 /*
1483                  * move remaining events in the temporary event queue back
1484                  * to the port event queue
1485                  */
1486                 port_push_eventq(portq);
1487         }
1488         portq->portq_getn--; /* update # of threads retrieving events */
1489         if (--portq->portq_thrcnt == 0) { /* # of threads waiting ... */
1490                 /* Last thread => check close(2) conditions ... */
1491                 if (portq->portq_flags & PORTQ_CLOSE) {
1492                         cv_signal(&portq->portq_closecv);
1493                         mutex_exit(&portq->portq_mutex);
1494                         kmem_free(results, eventsz * nmax);
1495                         /* do not copyout events */
1496                         *nget = 0;
1497                         return (EBADFD);
1498                 }
1499         } else if (portq->portq_getn == 0) {
1500                 /*
1501                  * no other threads retrieving events ...
1502                  * check wakeup conditions of sleeping threads
1503                  */
1504                 if ((portq->portq_thread != NULL) &&
1505                     (portq->portq_nent >= portq->portq_nget))
1506                         cv_signal(&portq->portq_thread->portget_cv);
1507         }
1508 
1509         /*
1510          * Check PORTQ_POLLIN here because the current thread set temporarily
1511          * the number of events in the queue to zero.
1512          */
1513         if (portq->portq_flags & PORTQ_POLLIN) {
1514                 portq->portq_flags &= ~PORTQ_POLLIN;
1515                 mutex_exit(&portq->portq_mutex);
1516                 pollwakeup(&pp->port_pollhd, POLLIN);
1517         } else {
1518                 mutex_exit(&portq->portq_mutex);
1519         }
1520 
1521         /* now copyout list of user event structures to user space */
1522         if (nevents) {
1523                 if (copyout(results, uevp, nevents * eventsz))
1524                         error = EFAULT;
1525         }
1526         kmem_free(results, eventsz * nmax);
1527 
1528         if (nevents == 0 && error == 0 && pgt->pgt_loop == 0 && blocking != 0) {
1529                 /* no events retrieved: check loop conditions */
1530                 if (blocking == -1) {
1531                         /* no timeout checked */
1532                         error = port_get_timeout(pgt->pgt_timeout,
1533                             &pgt->pgt_rqtime, &rqtp, &blocking, flag);
1534                         if (error) {
1535                                 *nget = nevents;
1536                                 return (error);
1537                         }
1538                         if (rqtp != NULL) {
1539                                 timespec_t      now;
1540                                 pgt->pgt_timecheck = timechanged;
1541                                 gethrestime(&now);
1542                                 timespecadd(&pgt->pgt_rqtime, &now);
1543                         }
1544                         pgt->pgt_rqtp = rqtp;
1545                 } else {
1546                         /* timeout already checked -> remember values */
1547                         pgt->pgt_rqtp = rqtp;
1548                         if (rqtp != NULL) {
1549                                 pgt->pgt_timecheck = timecheck;
1550                                 pgt->pgt_rqtime = *rqtp;
1551                         }
1552                 }
1553                 if (blocking)
1554                         /* timeout remaining */
1555                         pgt->pgt_loop = 1;
1556         }
1557 
1558         /* set number of user event structures completed */
1559         *nget = nevents;
1560         return (error);
1561 }
1562 
1563 /*
1564  * 1. copy kernel event structure to user event structure.
1565  * 2. PORT_KEV_WIRED event structures will be reused by the "source"
1566  * 3. Remove PORT_KEV_DONEQ flag (event removed from the event queue)
1567  * 4. Other types of event structures can be delivered back to the port cache
1568  *    (port_free_event_local()).
1569  * 5. The event source callback function is the last opportunity for the
1570  *    event source to update events, to free local resources associated with
1571  *    the event or to deny the delivery of the event.
1572  */
1573 static int
1574 port_copy_event(port_event_t *puevp, port_kevent_t *pkevp, list_t *list)
1575 {
1576         int     free_event = 0;
1577         int     flags;
1578         int     error;
1579 
1580         puevp->portev_source = pkevp->portkev_source;
1581         puevp->portev_object = pkevp->portkev_object;
1582         puevp->portev_user = pkevp->portkev_user;
1583         puevp->portev_events = pkevp->portkev_events;
1584 
1585         /* remove event from the queue */
1586         list_remove(list, pkevp);
1587 
1588         /*
1589          * Events of type PORT_KEV_WIRED remain allocated by the
1590          * event source.
1591          */
1592         flags = pkevp->portkev_flags;
1593         if (pkevp->portkev_flags & PORT_KEV_WIRED)
1594                 pkevp->portkev_flags &= ~PORT_KEV_DONEQ;
1595         else
1596                 free_event = 1;
1597 
1598         if (pkevp->portkev_callback) {
1599                 error = (*pkevp->portkev_callback)(pkevp->portkev_arg,
1600                     &puevp->portev_events, pkevp->portkev_pid,
1601                     PORT_CALLBACK_DEFAULT, pkevp);
1602 
1603                 if (error) {
1604                         /*
1605                          * Event can not be delivered.
1606                          * Caller must reinsert the event into the queue.
1607                          */
1608                         pkevp->portkev_flags = flags;
1609                         return (error);
1610                 }
1611         }
1612         if (free_event)
1613                 port_free_event_local(pkevp, 0);
1614         return (0);
1615 }
1616 
1617 #ifdef  _SYSCALL32_IMPL
1618 /*
1619  * 1. copy kernel event structure to user event structure.
1620  * 2. PORT_KEV_WIRED event structures will be reused by the "source"
1621  * 3. Remove PORT_KEV_DONEQ flag (event removed from the event queue)
1622  * 4. Other types of event structures can be delivered back to the port cache
1623  *    (port_free_event_local()).
1624  * 5. The event source callback function is the last opportunity for the
1625  *    event source to update events, to free local resources associated with
1626  *    the event or to deny the delivery of the event.
1627  */
1628 static int
1629 port_copy_event32(port_event32_t *puevp, port_kevent_t *pkevp, list_t *list)
1630 {
1631         int     free_event = 0;
1632         int     error;
1633         int     flags;
1634 
1635         puevp->portev_source = pkevp->portkev_source;
1636         puevp->portev_object = (daddr32_t)pkevp->portkev_object;
1637         puevp->portev_user = (caddr32_t)(uintptr_t)pkevp->portkev_user;
1638         puevp->portev_events = pkevp->portkev_events;
1639 
1640         /* remove event from the queue */
1641         list_remove(list, pkevp);
1642 
1643         /*
1644          * Events if type PORT_KEV_WIRED remain allocated by the
1645          * sub-system (source).
1646          */
1647 
1648         flags = pkevp->portkev_flags;
1649         if (pkevp->portkev_flags & PORT_KEV_WIRED)
1650                 pkevp->portkev_flags &= ~PORT_KEV_DONEQ;
1651         else
1652                 free_event = 1;
1653 
1654         if (pkevp->portkev_callback != NULL) {
1655                 error = (*pkevp->portkev_callback)(pkevp->portkev_arg,
1656                     &puevp->portev_events, pkevp->portkev_pid,
1657                     PORT_CALLBACK_DEFAULT, pkevp);
1658                 if (error) {
1659                         /*
1660                          * Event can not be delivered.
1661                          * Caller must reinsert the event into the queue.
1662                          */
1663                         pkevp->portkev_flags = flags;
1664                         return (error);
1665                 }
1666         }
1667         if (free_event)
1668                 port_free_event_local(pkevp, 0);
1669         return (0);
1670 }
1671 #endif  /* _SYSCALL32_IMPL */
1672 
1673 /*
1674  * copyout alert event.
1675  */
1676 static int
1677 port_get_alert(port_alert_t *pa, port_event_t *uevp)
1678 {
1679         model_t model = get_udatamodel();
1680 
1681         /* copyout alert event structures to user space */
1682         if (model == DATAMODEL_NATIVE) {
1683                 port_event_t    uev;
1684                 uev.portev_source = PORT_SOURCE_ALERT;
1685                 uev.portev_object = pa->portal_object;
1686                 uev.portev_events = pa->portal_events;
1687                 uev.portev_user = pa->portal_user;
1688                 if (copyout(&uev, uevp, sizeof (port_event_t)))
1689                         return (EFAULT);
1690 #ifdef  _SYSCALL32_IMPL
1691         } else {
1692                 port_event32_t  uev32;
1693                 uev32.portev_source = PORT_SOURCE_ALERT;
1694                 uev32.portev_object = (daddr32_t)pa->portal_object;
1695                 uev32.portev_events = pa->portal_events;
1696                 uev32.portev_user = (daddr32_t)(uintptr_t)pa->portal_user;
1697                 if (copyout(&uev32, uevp, sizeof (port_event32_t)))
1698                         return (EFAULT);
1699 #endif  /* _SYSCALL32_IMPL */
1700         }
1701         return (0);
1702 }
1703 
1704 /*
1705  * Check return conditions :
1706  * - pending port close(2)
1707  * - threads waiting for events
1708  */
1709 static void
1710 port_check_return_cond(port_queue_t *portq)
1711 {
1712         ASSERT(MUTEX_HELD(&portq->portq_mutex));
1713         portq->portq_thrcnt--;
1714         if (portq->portq_flags & PORTQ_CLOSE) {
1715                 if (portq->portq_thrcnt == 0)
1716                         cv_signal(&portq->portq_closecv);
1717                 else
1718                         cv_signal(&portq->portq_thread->portget_cv);
1719         }
1720 }
1721 
1722 /*
1723  * The port_get_kevent() function returns
1724  * - the event located at the head of the queue if 'last' pointer is NULL
1725  * - the next event after the event pointed by 'last'
1726  * The caller of this function is responsible for the integrity of the queue
1727  * in use:
1728  * - port_getn() is using a temporary queue protected with port_block().
1729  * - port_close_events() is working on the global event queue and protects
1730  *   the queue with portq->portq_mutex.
1731  */
1732 port_kevent_t *
1733 port_get_kevent(list_t *list, port_kevent_t *last)
1734 {
1735         if (last == NULL)
1736                 return (list_head(list));
1737         else
1738                 return (list_next(list, last));
1739 }
1740 
1741 /*
1742  * The port_get_timeout() function gets the timeout data from user space
1743  * and converts that info into a corresponding internal representation.
1744  * The kerneldata flag means that the timeout data is already loaded.
1745  */
1746 static int
1747 port_get_timeout(timespec_t *timeout, timespec_t *rqtime, timespec_t **rqtp,
1748     int *blocking, int kerneldata)
1749 {
1750         model_t model = get_udatamodel();
1751 
1752         *rqtp = NULL;
1753         if (timeout == NULL) {
1754                 *blocking = 1;
1755                 return (0);
1756         }
1757 
1758         if (kerneldata) {
1759                 *rqtime = *timeout;
1760         } else {
1761                 if (model == DATAMODEL_NATIVE) {
1762                         if (copyin(timeout, rqtime, sizeof (*rqtime)))
1763                                 return (EFAULT);
1764 #ifdef  _SYSCALL32_IMPL
1765                 } else {
1766                         timespec32_t    wait_time_32;
1767                         if (copyin(timeout, &wait_time_32,
1768                             sizeof (wait_time_32)))
1769                                 return (EFAULT);
1770                         TIMESPEC32_TO_TIMESPEC(rqtime, &wait_time_32);
1771 #endif  /* _SYSCALL32_IMPL */
1772                 }
1773         }
1774 
1775         if (rqtime->tv_sec == 0 && rqtime->tv_nsec == 0) {
1776                 *blocking = 0;
1777                 return (0);
1778         }
1779 
1780         if (rqtime->tv_sec < 0 ||
1781             rqtime->tv_nsec < 0 || rqtime->tv_nsec >= NANOSEC)
1782                 return (EINVAL);
1783 
1784         *rqtp = rqtime;
1785         *blocking = 1;
1786         return (0);
1787 }
1788 
1789 /*
1790  * port_queue_thread()
1791  * Threads requiring more events than available will be put in a wait queue.
1792  * There is a "thread wait queue" per port.
1793  * Threads requiring less events get a higher priority than others and they
1794  * will be awoken first.
1795  */
1796 static portget_t *
1797 port_queue_thread(port_queue_t *portq, uint_t nget)
1798 {
1799         portget_t       *pgetp;
1800         portget_t       *ttp;
1801         portget_t       *htp;
1802 
1803         pgetp = kmem_zalloc(sizeof (portget_t), KM_SLEEP);
1804         pgetp->portget_nget = nget;
1805         pgetp->portget_pid = curproc->p_pid;
1806         if (portq->portq_thread == NULL) {
1807                 /* first waiting thread */
1808                 portq->portq_thread = pgetp;
1809                 portq->portq_nget = nget;
1810                 pgetp->portget_prev = pgetp;
1811                 pgetp->portget_next = pgetp;
1812                 return (pgetp);
1813         }
1814 
1815         /*
1816          * thread waiting for less events will be set on top of the queue.
1817          */
1818         ttp = portq->portq_thread;
1819         htp = ttp;
1820         for (;;) {
1821                 if (nget <= ttp->portget_nget)
1822                         break;
1823                 if (htp == ttp->portget_next)
1824                         break;  /* last event */
1825                 ttp = ttp->portget_next;
1826         }
1827 
1828         /* add thread to the queue */
1829         pgetp->portget_next = ttp;
1830         pgetp->portget_prev = ttp->portget_prev;
1831         ttp->portget_prev->portget_next = pgetp;
1832         ttp->portget_prev = pgetp;
1833         if (portq->portq_thread == ttp)
1834                 portq->portq_thread = pgetp;
1835         portq->portq_nget = portq->portq_thread->portget_nget;
1836         return (pgetp);
1837 }
1838 
1839 /*
1840  * Take thread out of the queue.
1841  */
1842 static void
1843 port_dequeue_thread(port_queue_t *portq, portget_t *pgetp)
1844 {
1845         if (pgetp->portget_next == pgetp) {
1846                 /* last (single) waiting thread */
1847                 portq->portq_thread = NULL;
1848                 portq->portq_nget = 0;
1849         } else {
1850                 pgetp->portget_prev->portget_next = pgetp->portget_next;
1851                 pgetp->portget_next->portget_prev = pgetp->portget_prev;
1852                 if (portq->portq_thread == pgetp)
1853                         portq->portq_thread = pgetp->portget_next;
1854                 portq->portq_nget = portq->portq_thread->portget_nget;
1855         }
1856         kmem_free(pgetp, sizeof (portget_t));
1857 }
1858 
1859 /*
1860  * Set up event port kstats.
1861  */
1862 static void
1863 port_kstat_init()
1864 {
1865         kstat_t *ksp;
1866         uint_t  ndata;
1867 
1868         ndata = sizeof (port_kstat) / sizeof (kstat_named_t);
1869         ksp = kstat_create("portfs", 0, "Event Ports", "misc",
1870             KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_VIRTUAL);
1871         if (ksp) {
1872                 ksp->ks_data = &port_kstat;
1873                 kstat_install(ksp);
1874         }
1875 }