Print this page
11927 Log, or optionally panic, on zero-length kmem allocations
Reviewed by: Dan McDonald <danmcd@joyent.com>
Reviewed by: Jason King <jason.brian.king@gmail.com>
| Split |
Close |
| Expand all |
| Collapse all |
--- old/usr/src/cmd/mdb/common/modules/genunix/genunix.c
+++ new/usr/src/cmd/mdb/common/modules/genunix/genunix.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
24 24 * Copyright 2019 Joyent, Inc.
25 25 * Copyright (c) 2013 by Delphix. All rights reserved.
26 26 */
27 27
28 28 #include <mdb/mdb_param.h>
29 29 #include <mdb/mdb_modapi.h>
30 30 #include <mdb/mdb_ks.h>
31 31 #include <mdb/mdb_ctf.h>
32 32
33 33 #include <sys/types.h>
34 34 #include <sys/thread.h>
35 35 #include <sys/session.h>
36 36 #include <sys/user.h>
37 37 #include <sys/proc.h>
38 38 #include <sys/var.h>
39 39 #include <sys/t_lock.h>
40 40 #include <sys/callo.h>
41 41 #include <sys/priocntl.h>
42 42 #include <sys/class.h>
43 43 #include <sys/regset.h>
44 44 #include <sys/stack.h>
45 45 #include <sys/cpuvar.h>
46 46 #include <sys/vnode.h>
47 47 #include <sys/vfs.h>
48 48 #include <sys/flock_impl.h>
49 49 #include <sys/kmem_impl.h>
50 50 #include <sys/vmem_impl.h>
51 51 #include <sys/kstat.h>
52 52 #include <sys/dditypes.h>
53 53 #include <sys/ddi_impldefs.h>
54 54 #include <sys/sysmacros.h>
55 55 #include <sys/sysconf.h>
56 56 #include <sys/task.h>
57 57 #include <sys/project.h>
58 58 #include <sys/errorq_impl.h>
59 59 #include <sys/cred_impl.h>
60 60 #include <sys/zone.h>
61 61 #include <sys/panic.h>
62 62 #include <regex.h>
63 63 #include <sys/port_impl.h>
64 64 #include <sys/contract/process_impl.h>
65 65
66 66 #include "avl.h"
67 67 #include "bio.h"
68 68 #include "bitset.h"
69 69 #include "combined.h"
70 70 #include "contract.h"
71 71 #include "cpupart_mdb.h"
72 72 #include "cred.h"
73 73 #include "ctxop.h"
74 74 #include "cyclic.h"
75 75 #include "damap.h"
76 76 #include "ddi_periodic.h"
77 77 #include "devinfo.h"
78 78 #include "dnlc.h"
79 79 #include "findstack.h"
80 80 #include "fm.h"
81 81 #include "gcore.h"
82 82 #include "group.h"
83 83 #include "irm.h"
84 84 #include "kgrep.h"
85 85 #include "kmem.h"
86 86 #include "ldi.h"
87 87 #include "leaky.h"
88 88 #include "lgrp.h"
89 89 #include "list.h"
90 90 #include "log.h"
91 91 #include "mdi.h"
92 92 #include "memory.h"
93 93 #include "mmd.h"
94 94 #include "modhash.h"
95 95 #include "ndievents.h"
96 96 #include "net.h"
97 97 #include "netstack.h"
98 98 #include "nvpair.h"
99 99 #include "pci.h"
100 100 #include "pg.h"
101 101 #include "rctl.h"
102 102 #include "sobj.h"
103 103 #include "streams.h"
104 104 #include "sysevent.h"
105 105 #include "taskq.h"
106 106 #include "thread.h"
107 107 #include "tsd.h"
108 108 #include "tsol.h"
109 109 #include "typegraph.h"
110 110 #include "vfs.h"
111 111 #include "zone.h"
112 112 #include "hotplug.h"
113 113
114 114 /*
115 115 * Surely this is defined somewhere...
116 116 */
117 117 #define NINTR 16
118 118
119 119 #define KILOS 10
120 120 #define MEGS 20
121 121 #define GIGS 30
122 122
123 123 #ifndef STACK_BIAS
124 124 #define STACK_BIAS 0
125 125 #endif
126 126
127 127 static char
128 128 pstat2ch(uchar_t state)
129 129 {
130 130 switch (state) {
131 131 case SSLEEP: return ('S');
132 132 case SRUN: return ('R');
133 133 case SZOMB: return ('Z');
134 134 case SIDL: return ('I');
135 135 case SONPROC: return ('O');
136 136 case SSTOP: return ('T');
137 137 case SWAIT: return ('W');
138 138 default: return ('?');
139 139 }
140 140 }
141 141
142 142 #define PS_PRTTHREADS 0x1
143 143 #define PS_PRTLWPS 0x2
144 144 #define PS_PSARGS 0x4
145 145 #define PS_TASKS 0x8
146 146 #define PS_PROJECTS 0x10
147 147 #define PS_ZONES 0x20
148 148 #define PS_SERVICES 0x40
149 149
150 150 static int
151 151 ps_threadprint(uintptr_t addr, const void *data, void *private)
152 152 {
153 153 const kthread_t *t = (const kthread_t *)data;
154 154 uint_t prt_flags = *((uint_t *)private);
155 155
156 156 static const mdb_bitmask_t t_state_bits[] = {
157 157 { "TS_FREE", UINT_MAX, TS_FREE },
158 158 { "TS_SLEEP", TS_SLEEP, TS_SLEEP },
159 159 { "TS_RUN", TS_RUN, TS_RUN },
160 160 { "TS_ONPROC", TS_ONPROC, TS_ONPROC },
161 161 { "TS_ZOMB", TS_ZOMB, TS_ZOMB },
162 162 { "TS_STOPPED", TS_STOPPED, TS_STOPPED },
163 163 { "TS_WAIT", TS_WAIT, TS_WAIT },
164 164 { NULL, 0, 0 }
165 165 };
166 166
167 167 if (prt_flags & PS_PRTTHREADS)
168 168 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits);
169 169
170 170 if (prt_flags & PS_PRTLWPS) {
171 171 char desc[128] = "";
172 172
173 173 (void) thread_getdesc(addr, B_FALSE, desc, sizeof (desc));
174 174
175 175 mdb_printf("\tL %?a ID: %s\n", t->t_lwp, desc);
176 176 }
177 177
178 178 return (WALK_NEXT);
179 179 }
180 180
181 181 typedef struct mdb_pflags_proc {
182 182 struct pid *p_pidp;
183 183 ushort_t p_pidflag;
184 184 uint_t p_proc_flag;
185 185 uint_t p_flag;
186 186 } mdb_pflags_proc_t;
187 187
188 188 static int
189 189 pflags(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
190 190 {
191 191 mdb_pflags_proc_t pr;
192 192 struct pid pid;
193 193
194 194 static const mdb_bitmask_t p_flag_bits[] = {
195 195 { "SSYS", SSYS, SSYS },
196 196 { "SEXITING", SEXITING, SEXITING },
197 197 { "SITBUSY", SITBUSY, SITBUSY },
198 198 { "SFORKING", SFORKING, SFORKING },
199 199 { "SWATCHOK", SWATCHOK, SWATCHOK },
200 200 { "SKILLED", SKILLED, SKILLED },
201 201 { "SSCONT", SSCONT, SSCONT },
202 202 { "SZONETOP", SZONETOP, SZONETOP },
203 203 { "SEXTKILLED", SEXTKILLED, SEXTKILLED },
204 204 { "SUGID", SUGID, SUGID },
205 205 { "SEXECED", SEXECED, SEXECED },
206 206 { "SJCTL", SJCTL, SJCTL },
207 207 { "SNOWAIT", SNOWAIT, SNOWAIT },
208 208 { "SVFORK", SVFORK, SVFORK },
209 209 { "SVFWAIT", SVFWAIT, SVFWAIT },
210 210 { "SEXITLWPS", SEXITLWPS, SEXITLWPS },
211 211 { "SHOLDFORK", SHOLDFORK, SHOLDFORK },
212 212 { "SHOLDFORK1", SHOLDFORK1, SHOLDFORK1 },
213 213 { "SCOREDUMP", SCOREDUMP, SCOREDUMP },
214 214 { "SMSACCT", SMSACCT, SMSACCT },
215 215 { "SLWPWRAP", SLWPWRAP, SLWPWRAP },
216 216 { "SAUTOLPG", SAUTOLPG, SAUTOLPG },
217 217 { "SNOCD", SNOCD, SNOCD },
218 218 { "SHOLDWATCH", SHOLDWATCH, SHOLDWATCH },
219 219 { "SMSFORK", SMSFORK, SMSFORK },
220 220 { "SDOCORE", SDOCORE, SDOCORE },
221 221 { NULL, 0, 0 }
222 222 };
223 223
224 224 static const mdb_bitmask_t p_pidflag_bits[] = {
225 225 { "CLDPEND", CLDPEND, CLDPEND },
226 226 { "CLDCONT", CLDCONT, CLDCONT },
227 227 { "CLDNOSIGCHLD", CLDNOSIGCHLD, CLDNOSIGCHLD },
228 228 { "CLDWAITPID", CLDWAITPID, CLDWAITPID },
229 229 { NULL, 0, 0 }
230 230 };
231 231
232 232 static const mdb_bitmask_t p_proc_flag_bits[] = {
233 233 { "P_PR_TRACE", P_PR_TRACE, P_PR_TRACE },
234 234 { "P_PR_PTRACE", P_PR_PTRACE, P_PR_PTRACE },
235 235 { "P_PR_FORK", P_PR_FORK, P_PR_FORK },
236 236 { "P_PR_LOCK", P_PR_LOCK, P_PR_LOCK },
237 237 { "P_PR_ASYNC", P_PR_ASYNC, P_PR_ASYNC },
238 238 { "P_PR_EXEC", P_PR_EXEC, P_PR_EXEC },
239 239 { "P_PR_BPTADJ", P_PR_BPTADJ, P_PR_BPTADJ },
240 240 { "P_PR_RUNLCL", P_PR_RUNLCL, P_PR_RUNLCL },
241 241 { "P_PR_KILLCL", P_PR_KILLCL, P_PR_KILLCL },
242 242 { NULL, 0, 0 }
243 243 };
244 244
245 245 if (!(flags & DCMD_ADDRSPEC)) {
246 246 if (mdb_walk_dcmd("proc", "pflags", argc, argv) == -1) {
247 247 mdb_warn("can't walk 'proc'");
248 248 return (DCMD_ERR);
249 249 }
250 250 return (DCMD_OK);
251 251 }
252 252
253 253 if (mdb_ctf_vread(&pr, "proc_t", "mdb_pflags_proc_t", addr, 0) == -1 ||
254 254 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp) == -1) {
255 255 mdb_warn("cannot read proc_t or pid");
256 256 return (DCMD_ERR);
257 257 }
258 258
259 259 mdb_printf("%p [pid %d]:\n", addr, pid.pid_id);
260 260 mdb_printf("\tp_flag: %08x <%b>\n", pr.p_flag, pr.p_flag,
261 261 p_flag_bits);
262 262 mdb_printf("\tp_pidflag: %08x <%b>\n", pr.p_pidflag, pr.p_pidflag,
263 263 p_pidflag_bits);
264 264 mdb_printf("\tp_proc_flag: %08x <%b>\n", pr.p_proc_flag, pr.p_proc_flag,
265 265 p_proc_flag_bits);
266 266
267 267 return (DCMD_OK);
268 268 }
269 269
270 270 typedef struct mdb_ps_proc {
271 271 char p_stat;
272 272 struct pid *p_pidp;
273 273 struct pid *p_pgidp;
274 274 struct cred *p_cred;
275 275 struct sess *p_sessp;
276 276 struct task *p_task;
277 277 struct zone *p_zone;
278 278 struct cont_process *p_ct_process;
279 279 pid_t p_ppid;
280 280 uint_t p_flag;
281 281 struct {
282 282 char u_comm[MAXCOMLEN + 1];
283 283 char u_psargs[PSARGSZ];
284 284 } p_user;
285 285 } mdb_ps_proc_t;
286 286
287 287 /*
288 288 * A reasonable enough limit. Note that we purposefully let this column over-run
289 289 * if needed.
290 290 */
291 291 #define FMRI_LEN (128)
292 292
293 293 int
294 294 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
295 295 {
296 296 uint_t prt_flags = 0;
297 297 mdb_ps_proc_t pr;
298 298 struct pid pid, pgid, sid;
299 299 sess_t session;
300 300 cred_t cred;
301 301 task_t tk;
302 302 kproject_t pj;
303 303 zone_t zn;
304 304 struct cont_process cp;
305 305 char fmri[FMRI_LEN] = "";
306 306
307 307 if (!(flags & DCMD_ADDRSPEC)) {
308 308 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) {
309 309 mdb_warn("can't walk 'proc'");
310 310 return (DCMD_ERR);
311 311 }
312 312 return (DCMD_OK);
313 313 }
314 314
315 315 if (mdb_getopts(argc, argv,
316 316 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags,
317 317 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags,
318 318 's', MDB_OPT_SETBITS, PS_SERVICES, &prt_flags,
319 319 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags,
320 320 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags,
321 321 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags,
322 322 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc)
323 323 return (DCMD_USAGE);
324 324
325 325 if (DCMD_HDRSPEC(flags)) {
326 326 mdb_printf("%<u>%-1s %-6s %-6s %-6s %-6s ",
327 327 "S", "PID", "PPID", "PGID", "SID");
328 328 if (prt_flags & PS_TASKS)
329 329 mdb_printf("%-5s ", "TASK");
330 330 if (prt_flags & PS_PROJECTS)
331 331 mdb_printf("%-5s ", "PROJ");
332 332 if (prt_flags & PS_ZONES)
333 333 mdb_printf("%-5s ", "ZONE");
334 334 if (prt_flags & PS_SERVICES)
335 335 mdb_printf("%-40s ", "SERVICE");
336 336 mdb_printf("%-6s %-10s %-?s %-s%</u>\n",
337 337 "UID", "FLAGS", "ADDR", "NAME");
338 338 }
339 339
340 340 if (mdb_ctf_vread(&pr, "proc_t", "mdb_ps_proc_t", addr, 0) == -1)
341 341 return (DCMD_ERR);
342 342
343 343 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp);
344 344 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp);
345 345 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred);
346 346 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp);
347 347 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp);
348 348 if (prt_flags & (PS_TASKS | PS_PROJECTS))
349 349 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task);
350 350 if (prt_flags & PS_PROJECTS)
351 351 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj);
352 352 if (prt_flags & PS_ZONES)
353 353 mdb_vread(&zn, sizeof (zn), (uintptr_t)pr.p_zone);
354 354 if ((prt_flags & PS_SERVICES) && pr.p_ct_process != NULL) {
355 355 mdb_vread(&cp, sizeof (cp), (uintptr_t)pr.p_ct_process);
356 356
357 357 if (mdb_read_refstr((uintptr_t)cp.conp_svc_fmri, fmri,
358 358 sizeof (fmri)) <= 0)
359 359 (void) strlcpy(fmri, "?", sizeof (fmri));
360 360
361 361 /* Strip any standard prefix and suffix. */
362 362 if (strncmp(fmri, "svc:/", sizeof ("svc:/") - 1) == 0) {
363 363 char *i = fmri;
364 364 char *j = fmri + sizeof ("svc:/") - 1;
365 365 for (; *j != '\0'; i++, j++) {
366 366 if (strcmp(j, ":default") == 0)
367 367 break;
368 368 *i = *j;
369 369 }
370 370
371 371 *i = '\0';
372 372 }
373 373 }
374 374
375 375 mdb_printf("%-c %-6d %-6d %-6d %-6d ",
376 376 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id,
377 377 sid.pid_id);
378 378 if (prt_flags & PS_TASKS)
379 379 mdb_printf("%-5d ", tk.tk_tkid);
380 380 if (prt_flags & PS_PROJECTS)
381 381 mdb_printf("%-5d ", pj.kpj_id);
382 382 if (prt_flags & PS_ZONES)
383 383 mdb_printf("%-5d ", zn.zone_id);
384 384 if (prt_flags & PS_SERVICES)
385 385 mdb_printf("%-40s ", fmri);
386 386 mdb_printf("%-6d 0x%08x %0?p %-s\n",
387 387 cred.cr_uid, pr.p_flag, addr,
388 388 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm);
389 389
390 390 if (prt_flags & ~PS_PSARGS)
391 391 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr);
392 392
393 393 return (DCMD_OK);
394 394 }
395 395
396 396 static void
397 397 ps_help(void)
398 398 {
399 399 mdb_printf("Display processes.\n\n"
400 400 "Options:\n"
401 401 " -f\tDisplay command arguments\n"
402 402 " -l\tDisplay LWPs\n"
403 403 " -T\tDisplay tasks\n"
404 404 " -P\tDisplay projects\n"
405 405 " -s\tDisplay SMF FMRI\n"
406 406 " -z\tDisplay zones\n"
407 407 " -t\tDisplay threads\n\n");
408 408
409 409 mdb_printf("The resulting output is a table of the processes on the "
410 410 "system. The\n"
411 411 "columns in the output consist of a combination of the "
412 412 "following fields:\n\n");
413 413 mdb_printf("S\tProcess state. Possible states are:\n"
414 414 "\tS\tSleeping (SSLEEP)\n"
415 415 "\tR\tRunnable (SRUN)\n"
416 416 "\tZ\tZombie (SZOMB)\n"
417 417 "\tI\tIdle (SIDL)\n"
418 418 "\tO\tOn Cpu (SONPROC)\n"
419 419 "\tT\tStopped (SSTOP)\n"
420 420 "\tW\tWaiting (SWAIT)\n");
421 421
422 422 mdb_printf("PID\tProcess id.\n");
423 423 mdb_printf("PPID\tParent process id.\n");
424 424 mdb_printf("PGID\tProcess group id.\n");
425 425 mdb_printf("SID\tProcess id of the session leader.\n");
426 426 mdb_printf("TASK\tThe task id of the process.\n");
427 427 mdb_printf("PROJ\tThe project id of the process.\n");
428 428 mdb_printf("ZONE\tThe zone id of the process.\n");
429 429 mdb_printf("SERVICE The SMF service FMRI of the process.\n");
430 430 mdb_printf("UID\tThe user id of the process.\n");
431 431 mdb_printf("FLAGS\tThe process flags (see ::pflags).\n");
432 432 mdb_printf("ADDR\tThe kernel address of the proc_t structure of the "
433 433 "process\n");
434 434 mdb_printf("NAME\tThe name (p_user.u_comm field) of the process. If "
435 435 "the -f flag\n"
436 436 "\tis specified, the arguments of the process are displayed.\n");
437 437 }
438 438
439 439 #define PG_NEWEST 0x0001
440 440 #define PG_OLDEST 0x0002
441 441 #define PG_PIPE_OUT 0x0004
442 442 #define PG_EXACT_MATCH 0x0008
443 443
444 444 typedef struct pgrep_data {
445 445 uint_t pg_flags;
446 446 uint_t pg_psflags;
447 447 uintptr_t pg_xaddr;
448 448 hrtime_t pg_xstart;
449 449 const char *pg_pat;
450 450 #ifndef _KMDB
451 451 regex_t pg_reg;
452 452 #endif
453 453 } pgrep_data_t;
454 454
455 455 typedef struct mdb_pgrep_proc {
456 456 struct {
457 457 timestruc_t u_start;
458 458 char u_comm[MAXCOMLEN + 1];
459 459 } p_user;
460 460 } mdb_pgrep_proc_t;
461 461
462 462 /*ARGSUSED*/
463 463 static int
464 464 pgrep_cb(uintptr_t addr, const void *ignored, void *data)
465 465 {
466 466 mdb_pgrep_proc_t p;
467 467 pgrep_data_t *pgp = data;
468 468 #ifndef _KMDB
469 469 regmatch_t pmatch;
470 470 #endif
471 471
472 472 if (mdb_ctf_vread(&p, "proc_t", "mdb_pgrep_proc_t", addr, 0) == -1)
473 473 return (WALK_ERR);
474 474
475 475 /*
476 476 * kmdb doesn't have access to the reg* functions, so we fall back
477 477 * to strstr/strcmp.
478 478 */
479 479 #ifdef _KMDB
480 480 if ((pgp->pg_flags & PG_EXACT_MATCH) ?
481 481 (strcmp(p.p_user.u_comm, pgp->pg_pat) != 0) :
482 482 (strstr(p.p_user.u_comm, pgp->pg_pat) == NULL))
483 483 return (WALK_NEXT);
484 484 #else
485 485 if (regexec(&pgp->pg_reg, p.p_user.u_comm, 1, &pmatch, 0) != 0)
486 486 return (WALK_NEXT);
487 487
488 488 if ((pgp->pg_flags & PG_EXACT_MATCH) &&
489 489 (pmatch.rm_so != 0 || p.p_user.u_comm[pmatch.rm_eo] != '\0'))
490 490 return (WALK_NEXT);
491 491 #endif
492 492
493 493 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) {
494 494 hrtime_t start;
495 495
496 496 start = (hrtime_t)p.p_user.u_start.tv_sec * NANOSEC +
497 497 p.p_user.u_start.tv_nsec;
498 498
499 499 if (pgp->pg_flags & PG_NEWEST) {
500 500 if (pgp->pg_xaddr == 0 || start > pgp->pg_xstart) {
501 501 pgp->pg_xaddr = addr;
502 502 pgp->pg_xstart = start;
503 503 }
504 504 } else {
505 505 if (pgp->pg_xaddr == 0 || start < pgp->pg_xstart) {
506 506 pgp->pg_xaddr = addr;
507 507 pgp->pg_xstart = start;
508 508 }
509 509 }
510 510
511 511 } else if (pgp->pg_flags & PG_PIPE_OUT) {
512 512 mdb_printf("%p\n", addr);
513 513
514 514 } else {
515 515 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) {
516 516 mdb_warn("can't invoke 'ps'");
517 517 return (WALK_DONE);
518 518 }
519 519 pgp->pg_psflags &= ~DCMD_LOOPFIRST;
520 520 }
521 521
522 522 return (WALK_NEXT);
523 523 }
524 524
525 525 /*ARGSUSED*/
526 526 int
527 527 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
528 528 {
529 529 pgrep_data_t pg;
530 530 int i;
531 531 #ifndef _KMDB
532 532 int err;
533 533 #endif
534 534
535 535 if (flags & DCMD_ADDRSPEC)
536 536 return (DCMD_USAGE);
537 537
538 538 pg.pg_flags = 0;
539 539 pg.pg_xaddr = 0;
540 540
541 541 i = mdb_getopts(argc, argv,
542 542 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags,
543 543 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags,
544 544 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags,
545 545 NULL);
546 546
547 547 argc -= i;
548 548 argv += i;
549 549
550 550 if (argc != 1)
551 551 return (DCMD_USAGE);
552 552
553 553 /*
554 554 * -n and -o are mutually exclusive.
555 555 */
556 556 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST))
557 557 return (DCMD_USAGE);
558 558
559 559 if (argv->a_type != MDB_TYPE_STRING)
560 560 return (DCMD_USAGE);
561 561
562 562 if (flags & DCMD_PIPE_OUT)
563 563 pg.pg_flags |= PG_PIPE_OUT;
564 564
565 565 pg.pg_pat = argv->a_un.a_str;
566 566 if (DCMD_HDRSPEC(flags))
567 567 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST;
568 568 else
569 569 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP;
570 570
571 571 #ifndef _KMDB
572 572 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) {
573 573 size_t nbytes;
574 574 char *buf;
575 575
576 576 nbytes = regerror(err, &pg.pg_reg, NULL, 0);
577 577 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC);
578 578 (void) regerror(err, &pg.pg_reg, buf, nbytes);
579 579 mdb_warn("%s\n", buf);
580 580
581 581 return (DCMD_ERR);
582 582 }
583 583 #endif
584 584
585 585 if (mdb_walk("proc", pgrep_cb, &pg) != 0) {
586 586 mdb_warn("can't walk 'proc'");
587 587 return (DCMD_ERR);
588 588 }
589 589
590 590 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) {
591 591 if (pg.pg_flags & PG_PIPE_OUT) {
592 592 mdb_printf("%p\n", pg.pg_xaddr);
593 593 } else {
594 594 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags,
595 595 0, NULL) != 0) {
596 596 mdb_warn("can't invoke 'ps'");
597 597 return (DCMD_ERR);
598 598 }
599 599 }
600 600 }
601 601
602 602 return (DCMD_OK);
603 603 }
604 604
605 605 int
606 606 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
607 607 {
608 608 task_t tk;
609 609 kproject_t pj;
610 610
611 611 if (!(flags & DCMD_ADDRSPEC)) {
612 612 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) {
613 613 mdb_warn("can't walk task_cache");
614 614 return (DCMD_ERR);
615 615 }
616 616 return (DCMD_OK);
617 617 }
618 618 if (DCMD_HDRSPEC(flags)) {
619 619 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n",
620 620 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS");
621 621 }
622 622 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) {
623 623 mdb_warn("can't read task_t structure at %p", addr);
624 624 return (DCMD_ERR);
625 625 }
626 626 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) {
627 627 mdb_warn("can't read project_t structure at %p", addr);
628 628 return (DCMD_ERR);
629 629 }
630 630 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n",
631 631 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count,
632 632 tk.tk_flags);
633 633 return (DCMD_OK);
634 634 }
635 635
636 636 int
637 637 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
638 638 {
639 639 kproject_t pj;
640 640
641 641 if (!(flags & DCMD_ADDRSPEC)) {
642 642 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) {
643 643 mdb_warn("can't walk projects");
644 644 return (DCMD_ERR);
645 645 }
646 646 return (DCMD_OK);
647 647 }
648 648 if (DCMD_HDRSPEC(flags)) {
649 649 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n",
650 650 "ADDR", "PROJID", "ZONEID", "REFCNT");
651 651 }
652 652 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
653 653 mdb_warn("can't read kproject_t structure at %p", addr);
654 654 return (DCMD_ERR);
655 655 }
656 656 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid,
657 657 pj.kpj_count);
658 658 return (DCMD_OK);
659 659 }
660 660
661 661 /* walk callouts themselves, either by list or id hash. */
662 662 int
663 663 callout_walk_init(mdb_walk_state_t *wsp)
664 664 {
665 665 if (wsp->walk_addr == 0) {
666 666 mdb_warn("callout doesn't support global walk");
667 667 return (WALK_ERR);
668 668 }
669 669 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP);
670 670 return (WALK_NEXT);
671 671 }
672 672
673 673 #define CALLOUT_WALK_BYLIST 0
674 674 #define CALLOUT_WALK_BYID 1
675 675
676 676 /* the walker arg switches between walking by list (0) and walking by id (1). */
677 677 int
678 678 callout_walk_step(mdb_walk_state_t *wsp)
679 679 {
680 680 int retval;
681 681
682 682 if (wsp->walk_addr == 0) {
683 683 return (WALK_DONE);
684 684 }
685 685 if (mdb_vread(wsp->walk_data, sizeof (callout_t),
686 686 wsp->walk_addr) == -1) {
687 687 mdb_warn("failed to read callout at %p", wsp->walk_addr);
688 688 return (WALK_DONE);
689 689 }
690 690 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
691 691 wsp->walk_cbdata);
692 692
693 693 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) {
694 694 wsp->walk_addr =
695 695 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext);
696 696 } else {
697 697 wsp->walk_addr =
698 698 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext);
699 699 }
700 700
701 701 return (retval);
702 702 }
703 703
704 704 void
705 705 callout_walk_fini(mdb_walk_state_t *wsp)
706 706 {
707 707 mdb_free(wsp->walk_data, sizeof (callout_t));
708 708 }
709 709
710 710 /*
711 711 * walker for callout lists. This is different from hashes and callouts.
712 712 * Thankfully, it's also simpler.
713 713 */
714 714 int
715 715 callout_list_walk_init(mdb_walk_state_t *wsp)
716 716 {
717 717 if (wsp->walk_addr == 0) {
718 718 mdb_warn("callout list doesn't support global walk");
719 719 return (WALK_ERR);
720 720 }
721 721 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP);
722 722 return (WALK_NEXT);
723 723 }
724 724
725 725 int
726 726 callout_list_walk_step(mdb_walk_state_t *wsp)
727 727 {
728 728 int retval;
729 729
730 730 if (wsp->walk_addr == 0) {
731 731 return (WALK_DONE);
732 732 }
733 733 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t),
734 734 wsp->walk_addr) != sizeof (callout_list_t)) {
735 735 mdb_warn("failed to read callout_list at %p", wsp->walk_addr);
736 736 return (WALK_ERR);
737 737 }
738 738 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
739 739 wsp->walk_cbdata);
740 740
741 741 wsp->walk_addr = (uintptr_t)
742 742 (((callout_list_t *)wsp->walk_data)->cl_next);
743 743
744 744 return (retval);
745 745 }
746 746
747 747 void
748 748 callout_list_walk_fini(mdb_walk_state_t *wsp)
749 749 {
750 750 mdb_free(wsp->walk_data, sizeof (callout_list_t));
751 751 }
752 752
753 753 /* routines/structs to walk callout table(s) */
754 754 typedef struct cot_data {
755 755 callout_table_t *ct0;
756 756 callout_table_t ct;
757 757 callout_hash_t cot_idhash[CALLOUT_BUCKETS];
758 758 callout_hash_t cot_clhash[CALLOUT_BUCKETS];
759 759 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS];
760 760 int cotndx;
761 761 int cotsize;
762 762 } cot_data_t;
763 763
764 764 int
765 765 callout_table_walk_init(mdb_walk_state_t *wsp)
766 766 {
767 767 int max_ncpus;
768 768 cot_data_t *cot_walk_data;
769 769
770 770 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP);
771 771
772 772 if (wsp->walk_addr == 0) {
773 773 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) {
774 774 mdb_warn("failed to read 'callout_table'");
775 775 return (WALK_ERR);
776 776 }
777 777 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
778 778 mdb_warn("failed to get callout_table array size");
779 779 return (WALK_ERR);
780 780 }
781 781 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus;
782 782 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0;
783 783 } else {
784 784 /* not a global walk */
785 785 cot_walk_data->cotsize = 1;
786 786 }
787 787
788 788 cot_walk_data->cotndx = 0;
789 789 wsp->walk_data = cot_walk_data;
790 790
791 791 return (WALK_NEXT);
792 792 }
793 793
794 794 int
795 795 callout_table_walk_step(mdb_walk_state_t *wsp)
796 796 {
797 797 int retval;
798 798 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data;
799 799 size_t size;
800 800
801 801 if (cotwd->cotndx >= cotwd->cotsize) {
802 802 return (WALK_DONE);
803 803 }
804 804 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t),
805 805 wsp->walk_addr) != sizeof (callout_table_t)) {
806 806 mdb_warn("failed to read callout_table at %p", wsp->walk_addr);
807 807 return (WALK_ERR);
808 808 }
809 809
810 810 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
811 811 if (cotwd->ct.ct_idhash != NULL) {
812 812 if (mdb_vread(cotwd->cot_idhash, size,
813 813 (uintptr_t)(cotwd->ct.ct_idhash)) != size) {
814 814 mdb_warn("failed to read id_hash at %p",
815 815 cotwd->ct.ct_idhash);
816 816 return (WALK_ERR);
817 817 }
818 818 }
819 819 if (cotwd->ct.ct_clhash != NULL) {
820 820 if (mdb_vread(&(cotwd->cot_clhash), size,
821 821 (uintptr_t)cotwd->ct.ct_clhash) == -1) {
822 822 mdb_warn("failed to read cl_hash at %p",
823 823 cotwd->ct.ct_clhash);
824 824 return (WALK_ERR);
825 825 }
826 826 }
827 827 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS;
828 828 if (cotwd->ct.ct_kstat_data != NULL) {
829 829 if (mdb_vread(&(cotwd->ct_kstat_data), size,
830 830 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) {
831 831 mdb_warn("failed to read kstats at %p",
832 832 cotwd->ct.ct_kstat_data);
833 833 return (WALK_ERR);
834 834 }
835 835 }
836 836 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd,
837 837 wsp->walk_cbdata);
838 838
839 839 cotwd->cotndx++;
840 840 if (cotwd->cotndx >= cotwd->cotsize) {
841 841 return (WALK_DONE);
842 842 }
843 843 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr +
844 844 sizeof (callout_table_t));
845 845
846 846 return (retval);
847 847 }
848 848
849 849 void
850 850 callout_table_walk_fini(mdb_walk_state_t *wsp)
851 851 {
852 852 mdb_free(wsp->walk_data, sizeof (cot_data_t));
853 853 }
854 854
855 855 static const char *co_typenames[] = { "R", "N" };
856 856
857 857 #define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK)
858 858
859 859 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS)
860 860
861 861 /* callout flags, in no particular order */
862 862 #define COF_REAL 0x00000001
863 863 #define COF_NORM 0x00000002
864 864 #define COF_LONG 0x00000004
865 865 #define COF_SHORT 0x00000008
866 866 #define COF_EMPTY 0x00000010
867 867 #define COF_TIME 0x00000020
868 868 #define COF_BEFORE 0x00000040
869 869 #define COF_AFTER 0x00000080
870 870 #define COF_SEQID 0x00000100
871 871 #define COF_FUNC 0x00000200
872 872 #define COF_ADDR 0x00000400
873 873 #define COF_EXEC 0x00000800
874 874 #define COF_HIRES 0x00001000
875 875 #define COF_ABS 0x00002000
876 876 #define COF_TABLE 0x00004000
877 877 #define COF_BYIDH 0x00008000
878 878 #define COF_FREE 0x00010000
879 879 #define COF_LIST 0x00020000
880 880 #define COF_EXPREL 0x00040000
881 881 #define COF_HDR 0x00080000
882 882 #define COF_VERBOSE 0x00100000
883 883 #define COF_LONGLIST 0x00200000
884 884 #define COF_THDR 0x00400000
885 885 #define COF_LHDR 0x00800000
886 886 #define COF_CHDR 0x01000000
887 887 #define COF_PARAM 0x02000000
888 888 #define COF_DECODE 0x04000000
889 889 #define COF_HEAP 0x08000000
890 890 #define COF_QUEUE 0x10000000
891 891
892 892 /* show real and normal, short and long, expired and unexpired. */
893 893 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT)
894 894
895 895 #define COF_LIST_FLAGS \
896 896 (CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE)
897 897
898 898 /* private callout data for callback functions */
899 899 typedef struct callout_data {
900 900 uint_t flags; /* COF_* */
901 901 cpu_t *cpu; /* cpu pointer if given */
902 902 int seqid; /* cpu seqid, or -1 */
903 903 hrtime_t time; /* expiration time value */
904 904 hrtime_t atime; /* expiration before value */
905 905 hrtime_t btime; /* expiration after value */
906 906 uintptr_t funcaddr; /* function address or NULL */
907 907 uintptr_t param; /* parameter to function or NULL */
908 908 hrtime_t now; /* current system time */
909 909 int nsec_per_tick; /* for conversions */
910 910 ulong_t ctbits; /* for decoding xid */
911 911 callout_table_t *co_table; /* top of callout table array */
912 912 int ndx; /* table index. */
913 913 int bucket; /* which list/id bucket are we in */
914 914 hrtime_t exp; /* expire time */
915 915 int list_flags; /* copy of cl_flags */
916 916 } callout_data_t;
917 917
918 918 /* this callback does the actual callback itself (finally). */
919 919 /*ARGSUSED*/
920 920 static int
921 921 callouts_cb(uintptr_t addr, const void *data, void *priv)
922 922 {
923 923 callout_data_t *coargs = (callout_data_t *)priv;
924 924 callout_t *co = (callout_t *)data;
925 925 int tableid, list_flags;
926 926 callout_id_t coid;
927 927
928 928 if ((coargs == NULL) || (co == NULL)) {
929 929 return (WALK_ERR);
930 930 }
931 931
932 932 if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) {
933 933 /*
934 934 * The callout must have been reallocated. No point in
935 935 * walking any more.
936 936 */
937 937 return (WALK_DONE);
938 938 }
939 939 if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) {
940 940 /*
941 941 * The callout must have been freed. No point in
942 942 * walking any more.
943 943 */
944 944 return (WALK_DONE);
945 945 }
946 946 if ((coargs->flags & COF_FUNC) &&
947 947 (coargs->funcaddr != (uintptr_t)co->c_func)) {
948 948 return (WALK_NEXT);
949 949 }
950 950 if ((coargs->flags & COF_PARAM) &&
951 951 (coargs->param != (uintptr_t)co->c_arg)) {
952 952 return (WALK_NEXT);
953 953 }
954 954 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) {
955 955 return (WALK_NEXT);
956 956 }
957 957 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) {
958 958 return (WALK_NEXT);
959 959 }
960 960 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) {
961 961 return (WALK_NEXT);
962 962 }
963 963 /* it is possible we don't have the exp time or flags */
964 964 if (coargs->flags & COF_BYIDH) {
965 965 if (!(coargs->flags & COF_FREE)) {
966 966 /* we have to fetch the expire time ourselves. */
967 967 if (mdb_vread(&coargs->exp, sizeof (hrtime_t),
968 968 (uintptr_t)co->c_list + offsetof(callout_list_t,
969 969 cl_expiration)) == -1) {
970 970 mdb_warn("failed to read expiration "
971 971 "time from %p", co->c_list);
972 972 coargs->exp = 0;
973 973 }
974 974 /* and flags. */
975 975 if (mdb_vread(&coargs->list_flags, sizeof (int),
976 976 (uintptr_t)co->c_list + offsetof(callout_list_t,
977 977 cl_flags)) == -1) {
978 978 mdb_warn("failed to read list flags"
979 979 "from %p", co->c_list);
980 980 coargs->list_flags = 0;
981 981 }
982 982 } else {
983 983 /* free callouts can't use list pointer. */
984 984 coargs->exp = 0;
985 985 coargs->list_flags = 0;
986 986 }
987 987 if (coargs->exp != 0) {
988 988 if ((coargs->flags & COF_TIME) &&
989 989 (coargs->exp != coargs->time)) {
990 990 return (WALK_NEXT);
991 991 }
992 992 if ((coargs->flags & COF_BEFORE) &&
993 993 (coargs->exp > coargs->btime)) {
994 994 return (WALK_NEXT);
995 995 }
996 996 if ((coargs->flags & COF_AFTER) &&
997 997 (coargs->exp < coargs->atime)) {
998 998 return (WALK_NEXT);
999 999 }
1000 1000 }
1001 1001 /* tricky part, since both HIRES and ABS can be set */
1002 1002 list_flags = coargs->list_flags;
1003 1003 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
1004 1004 /* both flags are set, only skip "regular" ones */
1005 1005 if (! (list_flags & COF_LIST_FLAGS)) {
1006 1006 return (WALK_NEXT);
1007 1007 }
1008 1008 } else {
1009 1009 /* individual flags, or no flags */
1010 1010 if ((coargs->flags & COF_HIRES) &&
1011 1011 !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
1012 1012 return (WALK_NEXT);
1013 1013 }
1014 1014 if ((coargs->flags & COF_ABS) &&
1015 1015 !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
1016 1016 return (WALK_NEXT);
1017 1017 }
1018 1018 }
1019 1019 /*
1020 1020 * We do the checks for COF_HEAP and COF_QUEUE here only if we
1021 1021 * are traversing BYIDH. If the traversal is by callout list,
1022 1022 * we do this check in callout_list_cb() to be more
1023 1023 * efficient.
1024 1024 */
1025 1025 if ((coargs->flags & COF_HEAP) &&
1026 1026 !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
1027 1027 return (WALK_NEXT);
1028 1028 }
1029 1029
1030 1030 if ((coargs->flags & COF_QUEUE) &&
1031 1031 !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
1032 1032 return (WALK_NEXT);
1033 1033 }
1034 1034 }
1035 1035
1036 1036 #define callout_table_mask ((1 << coargs->ctbits) - 1)
1037 1037 tableid = CALLOUT_ID_TO_TABLE(co->c_xid);
1038 1038 #undef callout_table_mask
1039 1039 coid = CO_PLAIN_ID(co->c_xid);
1040 1040
1041 1041 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) {
1042 1042 /*
1043 1043 * We need to print the headers. If walking by id, then
1044 1044 * the list header isn't printed, so we must include
1045 1045 * that info here.
1046 1046 */
1047 1047 if (!(coargs->flags & COF_VERBOSE)) {
1048 1048 mdb_printf("%<u>%3s %-1s %-14s %</u>",
1049 1049 "SEQ", "T", "EXP");
1050 1050 } else if (coargs->flags & COF_BYIDH) {
1051 1051 mdb_printf("%<u>%-14s %</u>", "EXP");
1052 1052 }
1053 1053 mdb_printf("%<u>%-4s %-?s %-20s%</u>",
1054 1054 "XHAL", "XID", "FUNC(ARG)");
1055 1055 if (coargs->flags & COF_LONGLIST) {
1056 1056 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>",
1057 1057 "PREVID", "NEXTID", "PREVL", "NEXTL");
1058 1058 mdb_printf("%<u> %-?s %-4s %-?s%</u>",
1059 1059 "DONE", "UTOS", "THREAD");
1060 1060 }
1061 1061 mdb_printf("\n");
1062 1062 coargs->flags &= ~COF_CHDR;
1063 1063 coargs->flags |= (COF_THDR | COF_LHDR);
1064 1064 }
1065 1065
1066 1066 if (!(coargs->flags & COF_ADDR)) {
1067 1067 if (!(coargs->flags & COF_VERBOSE)) {
1068 1068 mdb_printf("%-3d %1s %-14llx ",
1069 1069 TABLE_TO_SEQID(tableid),
1070 1070 co_typenames[tableid & CALLOUT_TYPE_MASK],
1071 1071 (coargs->flags & COF_EXPREL) ?
1072 1072 coargs->exp - coargs->now : coargs->exp);
1073 1073 } else if (coargs->flags & COF_BYIDH) {
1074 1074 mdb_printf("%-14x ",
1075 1075 (coargs->flags & COF_EXPREL) ?
1076 1076 coargs->exp - coargs->now : coargs->exp);
1077 1077 }
1078 1078 list_flags = coargs->list_flags;
1079 1079 mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)",
1080 1080 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ",
1081 1081 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ",
1082 1082 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ",
1083 1083 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ",
1084 1084 (long long)coid, co->c_func, co->c_arg);
1085 1085 if (coargs->flags & COF_LONGLIST) {
1086 1086 mdb_printf(" %-?p %-?p %-?p %-?p",
1087 1087 co->c_idprev, co->c_idnext, co->c_clprev,
1088 1088 co->c_clnext);
1089 1089 mdb_printf(" %-?p %-4d %-0?p",
1090 1090 co->c_done, co->c_waiting, co->c_executor);
1091 1091 }
1092 1092 } else {
1093 1093 /* address only */
1094 1094 mdb_printf("%-0p", addr);
1095 1095 }
1096 1096 mdb_printf("\n");
1097 1097 return (WALK_NEXT);
1098 1098 }
1099 1099
1100 1100 /* this callback is for callout list handling. idhash is done by callout_t_cb */
1101 1101 /*ARGSUSED*/
1102 1102 static int
1103 1103 callout_list_cb(uintptr_t addr, const void *data, void *priv)
1104 1104 {
1105 1105 callout_data_t *coargs = (callout_data_t *)priv;
1106 1106 callout_list_t *cl = (callout_list_t *)data;
1107 1107 callout_t *coptr;
1108 1108 int list_flags;
1109 1109
1110 1110 if ((coargs == NULL) || (cl == NULL)) {
1111 1111 return (WALK_ERR);
1112 1112 }
1113 1113
1114 1114 coargs->exp = cl->cl_expiration;
1115 1115 coargs->list_flags = cl->cl_flags;
1116 1116 if ((coargs->flags & COF_FREE) &&
1117 1117 !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
1118 1118 /*
1119 1119 * The callout list must have been reallocated. No point in
1120 1120 * walking any more.
1121 1121 */
1122 1122 return (WALK_DONE);
1123 1123 }
1124 1124 if (!(coargs->flags & COF_FREE) &&
1125 1125 (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
1126 1126 /*
1127 1127 * The callout list must have been freed. No point in
1128 1128 * walking any more.
1129 1129 */
1130 1130 return (WALK_DONE);
1131 1131 }
1132 1132 if ((coargs->flags & COF_TIME) &&
1133 1133 (cl->cl_expiration != coargs->time)) {
1134 1134 return (WALK_NEXT);
1135 1135 }
1136 1136 if ((coargs->flags & COF_BEFORE) &&
1137 1137 (cl->cl_expiration > coargs->btime)) {
1138 1138 return (WALK_NEXT);
1139 1139 }
1140 1140 if ((coargs->flags & COF_AFTER) &&
1141 1141 (cl->cl_expiration < coargs->atime)) {
1142 1142 return (WALK_NEXT);
1143 1143 }
1144 1144 if (!(coargs->flags & COF_EMPTY) &&
1145 1145 (cl->cl_callouts.ch_head == NULL)) {
1146 1146 return (WALK_NEXT);
1147 1147 }
1148 1148 /* FOUR cases, each different, !A!B, !AB, A!B, AB */
1149 1149 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
1150 1150 /* both flags are set, only skip "regular" ones */
1151 1151 if (! (cl->cl_flags & COF_LIST_FLAGS)) {
1152 1152 return (WALK_NEXT);
1153 1153 }
1154 1154 } else {
1155 1155 if ((coargs->flags & COF_HIRES) &&
1156 1156 !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
1157 1157 return (WALK_NEXT);
1158 1158 }
1159 1159 if ((coargs->flags & COF_ABS) &&
1160 1160 !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
1161 1161 return (WALK_NEXT);
1162 1162 }
1163 1163 }
1164 1164
1165 1165 if ((coargs->flags & COF_HEAP) &&
1166 1166 !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
1167 1167 return (WALK_NEXT);
1168 1168 }
1169 1169
1170 1170 if ((coargs->flags & COF_QUEUE) &&
1171 1171 !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
1172 1172 return (WALK_NEXT);
1173 1173 }
1174 1174
1175 1175 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) &&
1176 1176 (coargs->flags & (COF_LIST | COF_VERBOSE))) {
1177 1177 if (!(coargs->flags & COF_VERBOSE)) {
1178 1178 /* don't be redundant again */
1179 1179 mdb_printf("%<u>SEQ T %</u>");
1180 1180 }
1181 1181 mdb_printf("%<u>EXP HA BUCKET "
1182 1182 "CALLOUTS %</u>");
1183 1183
1184 1184 if (coargs->flags & COF_LONGLIST) {
1185 1185 mdb_printf("%<u> %-?s %-?s%</u>",
1186 1186 "PREV", "NEXT");
1187 1187 }
1188 1188 mdb_printf("\n");
1189 1189 coargs->flags &= ~COF_LHDR;
1190 1190 coargs->flags |= (COF_THDR | COF_CHDR);
1191 1191 }
1192 1192 if (coargs->flags & (COF_LIST | COF_VERBOSE)) {
1193 1193 if (!(coargs->flags & COF_ADDR)) {
1194 1194 if (!(coargs->flags & COF_VERBOSE)) {
1195 1195 mdb_printf("%3d %1s ",
1196 1196 TABLE_TO_SEQID(coargs->ndx),
1197 1197 co_typenames[coargs->ndx &
1198 1198 CALLOUT_TYPE_MASK]);
1199 1199 }
1200 1200
1201 1201 list_flags = coargs->list_flags;
1202 1202 mdb_printf("%-14llx %1s%1s %-6d %-0?p ",
1203 1203 (coargs->flags & COF_EXPREL) ?
1204 1204 coargs->exp - coargs->now : coargs->exp,
1205 1205 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ?
1206 1206 "H" : " ",
1207 1207 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ?
1208 1208 "A" : " ",
1209 1209 coargs->bucket, cl->cl_callouts.ch_head);
1210 1210
1211 1211 if (coargs->flags & COF_LONGLIST) {
1212 1212 mdb_printf(" %-?p %-?p",
1213 1213 cl->cl_prev, cl->cl_next);
1214 1214 }
1215 1215 } else {
1216 1216 /* address only */
1217 1217 mdb_printf("%-0p", addr);
1218 1218 }
1219 1219 mdb_printf("\n");
1220 1220 if (coargs->flags & COF_LIST) {
1221 1221 return (WALK_NEXT);
1222 1222 }
1223 1223 }
1224 1224 /* yet another layer as we walk the actual callouts via list. */
1225 1225 if (cl->cl_callouts.ch_head == NULL) {
1226 1226 return (WALK_NEXT);
1227 1227 }
1228 1228 /* free list structures do not have valid callouts off of them. */
1229 1229 if (coargs->flags & COF_FREE) {
1230 1230 return (WALK_NEXT);
1231 1231 }
1232 1232 coptr = (callout_t *)cl->cl_callouts.ch_head;
1233 1233
1234 1234 if (coargs->flags & COF_VERBOSE) {
1235 1235 mdb_inc_indent(4);
1236 1236 }
1237 1237 /*
1238 1238 * walk callouts using yet another callback routine.
1239 1239 * we use callouts_bytime because id hash is handled via
1240 1240 * the callout_t_cb callback.
1241 1241 */
1242 1242 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs,
1243 1243 (uintptr_t)coptr) == -1) {
1244 1244 mdb_warn("cannot walk callouts at %p", coptr);
1245 1245 return (WALK_ERR);
1246 1246 }
1247 1247 if (coargs->flags & COF_VERBOSE) {
1248 1248 mdb_dec_indent(4);
1249 1249 }
1250 1250
1251 1251 return (WALK_NEXT);
1252 1252 }
1253 1253
1254 1254 /* this callback handles the details of callout table walking. */
1255 1255 static int
1256 1256 callout_t_cb(uintptr_t addr, const void *data, void *priv)
1257 1257 {
1258 1258 callout_data_t *coargs = (callout_data_t *)priv;
1259 1259 cot_data_t *cotwd = (cot_data_t *)data;
1260 1260 callout_table_t *ct = &(cotwd->ct);
1261 1261 int index, seqid, cotype;
1262 1262 int i;
1263 1263 callout_list_t *clptr;
1264 1264 callout_t *coptr;
1265 1265
1266 1266 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) {
1267 1267 return (WALK_ERR);
1268 1268 }
1269 1269
1270 1270 index = ((char *)addr - (char *)coargs->co_table) /
1271 1271 sizeof (callout_table_t);
1272 1272 cotype = index & CALLOUT_TYPE_MASK;
1273 1273 seqid = TABLE_TO_SEQID(index);
1274 1274
1275 1275 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) {
1276 1276 return (WALK_NEXT);
1277 1277 }
1278 1278
1279 1279 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) {
1280 1280 return (WALK_NEXT);
1281 1281 }
1282 1282
1283 1283 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) {
1284 1284 return (WALK_NEXT);
1285 1285 }
1286 1286
1287 1287 if (!(coargs->flags & COF_EMPTY) && (
1288 1288 (ct->ct_heap == NULL) || (ct->ct_cyclic == 0))) {
1289 1289 return (WALK_NEXT);
1290 1290 }
1291 1291
1292 1292 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) &&
1293 1293 (coargs->flags & (COF_TABLE | COF_VERBOSE))) {
1294 1294 /* print table hdr */
1295 1295 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>",
1296 1296 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP");
1297 1297 coargs->flags &= ~COF_THDR;
1298 1298 coargs->flags |= (COF_LHDR | COF_CHDR);
1299 1299 if (coargs->flags & COF_LONGLIST) {
1300 1300 /* more info! */
1301 1301 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s"
1302 1302 " %-?s %-?s %-?s%</u>",
1303 1303 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE",
1304 1304 "PEND", "FREE", "LOCK");
1305 1305 }
1306 1306 mdb_printf("\n");
1307 1307 }
1308 1308 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) {
1309 1309 if (!(coargs->flags & COF_ADDR)) {
1310 1310 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p",
1311 1311 seqid, co_typenames[cotype],
1312 1312 ct->ct_free, ct->ct_lfree, ct->ct_cyclic,
1313 1313 ct->ct_heap);
1314 1314 if (coargs->flags & COF_LONGLIST) {
1315 1315 /* more info! */
1316 1316 mdb_printf(" %-7d %-7d %-?p %-?p %-?p"
1317 1317 " %-?lld %-?lld %-?p",
1318 1318 ct->ct_heap_num, ct->ct_heap_max,
1319 1319 ct->ct_taskq, ct->ct_expired.ch_head,
1320 1320 ct->ct_queue.ch_head,
1321 1321 cotwd->ct_timeouts_pending,
1322 1322 cotwd->ct_allocations -
1323 1323 cotwd->ct_timeouts_pending,
1324 1324 ct->ct_mutex);
1325 1325 }
1326 1326 } else {
1327 1327 /* address only */
1328 1328 mdb_printf("%-0?p", addr);
1329 1329 }
1330 1330 mdb_printf("\n");
1331 1331 if (coargs->flags & COF_TABLE) {
1332 1332 return (WALK_NEXT);
1333 1333 }
1334 1334 }
1335 1335
1336 1336 coargs->ndx = index;
1337 1337 if (coargs->flags & COF_VERBOSE) {
1338 1338 mdb_inc_indent(4);
1339 1339 }
1340 1340 /* keep digging. */
1341 1341 if (!(coargs->flags & COF_BYIDH)) {
1342 1342 /* walk the list hash table */
1343 1343 if (coargs->flags & COF_FREE) {
1344 1344 clptr = ct->ct_lfree;
1345 1345 coargs->bucket = 0;
1346 1346 if (clptr == NULL) {
1347 1347 return (WALK_NEXT);
1348 1348 }
1349 1349 if (mdb_pwalk("callout_list", callout_list_cb, coargs,
1350 1350 (uintptr_t)clptr) == -1) {
1351 1351 mdb_warn("cannot walk callout free list at %p",
1352 1352 clptr);
1353 1353 return (WALK_ERR);
1354 1354 }
1355 1355 } else {
1356 1356 /* first print the expired list. */
1357 1357 clptr = (callout_list_t *)ct->ct_expired.ch_head;
1358 1358 if (clptr != NULL) {
1359 1359 coargs->bucket = -1;
1360 1360 if (mdb_pwalk("callout_list", callout_list_cb,
1361 1361 coargs, (uintptr_t)clptr) == -1) {
1362 1362 mdb_warn("cannot walk callout_list"
1363 1363 " at %p", clptr);
1364 1364 return (WALK_ERR);
1365 1365 }
1366 1366 }
1367 1367 /* then, print the callout queue */
1368 1368 clptr = (callout_list_t *)ct->ct_queue.ch_head;
1369 1369 if (clptr != NULL) {
1370 1370 coargs->bucket = -1;
1371 1371 if (mdb_pwalk("callout_list", callout_list_cb,
1372 1372 coargs, (uintptr_t)clptr) == -1) {
1373 1373 mdb_warn("cannot walk callout_list"
1374 1374 " at %p", clptr);
1375 1375 return (WALK_ERR);
1376 1376 }
1377 1377 }
1378 1378 for (i = 0; i < CALLOUT_BUCKETS; i++) {
1379 1379 if (ct->ct_clhash == NULL) {
1380 1380 /* nothing to do */
1381 1381 break;
1382 1382 }
1383 1383 if (cotwd->cot_clhash[i].ch_head == NULL) {
1384 1384 continue;
1385 1385 }
1386 1386 clptr = (callout_list_t *)
1387 1387 cotwd->cot_clhash[i].ch_head;
1388 1388 coargs->bucket = i;
1389 1389 /* walk list with callback routine. */
1390 1390 if (mdb_pwalk("callout_list", callout_list_cb,
1391 1391 coargs, (uintptr_t)clptr) == -1) {
1392 1392 mdb_warn("cannot walk callout_list"
1393 1393 " at %p", clptr);
1394 1394 return (WALK_ERR);
1395 1395 }
1396 1396 }
1397 1397 }
1398 1398 } else {
1399 1399 /* walk the id hash table. */
1400 1400 if (coargs->flags & COF_FREE) {
1401 1401 coptr = ct->ct_free;
1402 1402 coargs->bucket = 0;
1403 1403 if (coptr == NULL) {
1404 1404 return (WALK_NEXT);
1405 1405 }
1406 1406 if (mdb_pwalk("callouts_byid", callouts_cb, coargs,
1407 1407 (uintptr_t)coptr) == -1) {
1408 1408 mdb_warn("cannot walk callout id free list"
1409 1409 " at %p", coptr);
1410 1410 return (WALK_ERR);
1411 1411 }
1412 1412 } else {
1413 1413 for (i = 0; i < CALLOUT_BUCKETS; i++) {
1414 1414 if (ct->ct_idhash == NULL) {
1415 1415 break;
1416 1416 }
1417 1417 coptr = (callout_t *)
1418 1418 cotwd->cot_idhash[i].ch_head;
1419 1419 if (coptr == NULL) {
1420 1420 continue;
1421 1421 }
1422 1422 coargs->bucket = i;
1423 1423
1424 1424 /*
1425 1425 * walk callouts directly by id. For id
1426 1426 * chain, the callout list is just a header,
1427 1427 * so there's no need to walk it.
1428 1428 */
1429 1429 if (mdb_pwalk("callouts_byid", callouts_cb,
1430 1430 coargs, (uintptr_t)coptr) == -1) {
1431 1431 mdb_warn("cannot walk callouts at %p",
1432 1432 coptr);
1433 1433 return (WALK_ERR);
1434 1434 }
1435 1435 }
1436 1436 }
1437 1437 }
1438 1438 if (coargs->flags & COF_VERBOSE) {
1439 1439 mdb_dec_indent(4);
1440 1440 }
1441 1441 return (WALK_NEXT);
1442 1442 }
1443 1443
1444 1444 /*
1445 1445 * initialize some common info for both callout dcmds.
1446 1446 */
1447 1447 int
1448 1448 callout_common_init(callout_data_t *coargs)
1449 1449 {
1450 1450 /* we need a couple of things */
1451 1451 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) {
1452 1452 mdb_warn("failed to read 'callout_table'");
1453 1453 return (DCMD_ERR);
1454 1454 }
1455 1455 /* need to get now in nsecs. Approximate with hrtime vars */
1456 1456 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") !=
1457 1457 sizeof (hrtime_t)) {
1458 1458 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t),
1459 1459 "hrtime_base") != sizeof (hrtime_t)) {
1460 1460 mdb_warn("Could not determine current system time");
1461 1461 return (DCMD_ERR);
1462 1462 }
1463 1463 }
1464 1464
1465 1465 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) {
1466 1466 mdb_warn("failed to read 'callout_table_bits'");
1467 1467 return (DCMD_ERR);
1468 1468 }
1469 1469 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) {
1470 1470 mdb_warn("failed to read 'nsec_per_tick'");
1471 1471 return (DCMD_ERR);
1472 1472 }
1473 1473 return (DCMD_OK);
1474 1474 }
1475 1475
1476 1476 /*
1477 1477 * dcmd to print callouts. Optional addr limits to specific table.
1478 1478 * Parses lots of options that get passed to callbacks for walkers.
1479 1479 * Has it's own help function.
1480 1480 */
1481 1481 /*ARGSUSED*/
1482 1482 int
1483 1483 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1484 1484 {
1485 1485 callout_data_t coargs;
1486 1486 /* getopts doesn't help much with stuff like this */
1487 1487 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag;
1488 1488 char *funcname = NULL;
1489 1489 char *paramstr = NULL;
1490 1490 uintptr_t Stmp, Ctmp; /* for getopt. */
1491 1491 int retval;
1492 1492
1493 1493 coargs.flags = COF_DEFAULT;
1494 1494 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE;
1495 1495 coargs.seqid = -1;
1496 1496
1497 1497 if (mdb_getopts(argc, argv,
1498 1498 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags,
1499 1499 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags,
1500 1500 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags,
1501 1501 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags,
1502 1502 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags,
1503 1503 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags,
1504 1504 'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags,
1505 1505 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags,
1506 1506 'd', MDB_OPT_SETBITS, 1, &dflag,
1507 1507 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp,
1508 1508 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp,
1509 1509 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time,
1510 1510 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime,
1511 1511 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime,
1512 1512 'k', MDB_OPT_SETBITS, 1, &kflag,
1513 1513 'f', MDB_OPT_STR, &funcname,
1514 1514 'p', MDB_OPT_STR, ¶mstr,
1515 1515 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags,
1516 1516 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags,
1517 1517 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags,
1518 1518 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags,
1519 1519 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1520 1520 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags,
1521 1521 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags,
1522 1522 'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags,
1523 1523 'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags,
1524 1524 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags,
1525 1525 NULL) != argc) {
1526 1526 return (DCMD_USAGE);
1527 1527 }
1528 1528
1529 1529 /* initialize from kernel variables */
1530 1530 if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1531 1531 return (retval);
1532 1532 }
1533 1533
1534 1534 /* do some option post-processing */
1535 1535 if (kflag) {
1536 1536 coargs.time *= coargs.nsec_per_tick;
1537 1537 coargs.atime *= coargs.nsec_per_tick;
1538 1538 coargs.btime *= coargs.nsec_per_tick;
1539 1539 }
1540 1540
1541 1541 if (dflag) {
1542 1542 coargs.time += coargs.now;
1543 1543 coargs.atime += coargs.now;
1544 1544 coargs.btime += coargs.now;
1545 1545 }
1546 1546 if (Sflag) {
1547 1547 if (flags & DCMD_ADDRSPEC) {
1548 1548 mdb_printf("-S option conflicts with explicit"
1549 1549 " address\n");
1550 1550 return (DCMD_USAGE);
1551 1551 }
1552 1552 coargs.flags |= COF_SEQID;
1553 1553 coargs.seqid = (int)Stmp;
1554 1554 }
1555 1555 if (Cflag) {
1556 1556 if (flags & DCMD_ADDRSPEC) {
1557 1557 mdb_printf("-C option conflicts with explicit"
1558 1558 " address\n");
1559 1559 return (DCMD_USAGE);
1560 1560 }
1561 1561 if (coargs.flags & COF_SEQID) {
1562 1562 mdb_printf("-C and -S are mutually exclusive\n");
1563 1563 return (DCMD_USAGE);
1564 1564 }
1565 1565 coargs.cpu = (cpu_t *)Ctmp;
1566 1566 if (mdb_vread(&coargs.seqid, sizeof (processorid_t),
1567 1567 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) {
1568 1568 mdb_warn("failed to read cpu_t at %p", Ctmp);
1569 1569 return (DCMD_ERR);
1570 1570 }
1571 1571 coargs.flags |= COF_SEQID;
1572 1572 }
1573 1573 /* avoid null outputs. */
1574 1574 if (!(coargs.flags & (COF_REAL | COF_NORM))) {
1575 1575 coargs.flags |= COF_REAL | COF_NORM;
1576 1576 }
1577 1577 if (!(coargs.flags & (COF_LONG | COF_SHORT))) {
1578 1578 coargs.flags |= COF_LONG | COF_SHORT;
1579 1579 }
1580 1580 if (tflag) {
1581 1581 if (aflag || bflag) {
1582 1582 mdb_printf("-t and -a|b are mutually exclusive\n");
1583 1583 return (DCMD_USAGE);
1584 1584 }
1585 1585 coargs.flags |= COF_TIME;
1586 1586 }
1587 1587 if (aflag) {
1588 1588 coargs.flags |= COF_AFTER;
1589 1589 }
1590 1590 if (bflag) {
1591 1591 coargs.flags |= COF_BEFORE;
1592 1592 }
1593 1593 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) {
1594 1594 mdb_printf("value for -a must be earlier than the value"
1595 1595 " for -b.\n");
1596 1596 return (DCMD_USAGE);
1597 1597 }
1598 1598
1599 1599 if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) {
1600 1600 mdb_printf("-H and -Q are mutually exclusive\n");
1601 1601 return (DCMD_USAGE);
1602 1602 }
1603 1603
1604 1604 if (funcname != NULL) {
1605 1605 GElf_Sym sym;
1606 1606
1607 1607 if (mdb_lookup_by_name(funcname, &sym) != 0) {
1608 1608 coargs.funcaddr = mdb_strtoull(funcname);
1609 1609 } else {
1610 1610 coargs.funcaddr = sym.st_value;
1611 1611 }
1612 1612 coargs.flags |= COF_FUNC;
1613 1613 }
1614 1614
1615 1615 if (paramstr != NULL) {
1616 1616 GElf_Sym sym;
1617 1617
1618 1618 if (mdb_lookup_by_name(paramstr, &sym) != 0) {
1619 1619 coargs.param = mdb_strtoull(paramstr);
1620 1620 } else {
1621 1621 coargs.param = sym.st_value;
1622 1622 }
1623 1623 coargs.flags |= COF_PARAM;
1624 1624 }
1625 1625
1626 1626 if (!(flags & DCMD_ADDRSPEC)) {
1627 1627 /* don't pass "dot" if no addr. */
1628 1628 addr = 0;
1629 1629 }
1630 1630 if (addr != 0) {
1631 1631 /*
1632 1632 * a callout table was specified. Ignore -r|n option
1633 1633 * to avoid null output.
1634 1634 */
1635 1635 coargs.flags |= (COF_REAL | COF_NORM);
1636 1636 }
1637 1637
1638 1638 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) {
1639 1639 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR;
1640 1640 }
1641 1641 if (coargs.flags & COF_FREE) {
1642 1642 coargs.flags |= COF_EMPTY;
1643 1643 /* -F = free callouts, -FL = free lists */
1644 1644 if (!(coargs.flags & COF_LIST)) {
1645 1645 coargs.flags |= COF_BYIDH;
1646 1646 }
1647 1647 }
1648 1648
1649 1649 /* walk table, using specialized callback routine. */
1650 1650 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) {
1651 1651 mdb_warn("cannot walk callout_table");
1652 1652 return (DCMD_ERR);
1653 1653 }
1654 1654 return (DCMD_OK);
1655 1655 }
1656 1656
1657 1657
1658 1658 /*
1659 1659 * Given an extended callout id, dump its information.
1660 1660 */
1661 1661 /*ARGSUSED*/
1662 1662 int
1663 1663 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1664 1664 {
1665 1665 callout_data_t coargs;
1666 1666 callout_table_t *ctptr;
1667 1667 callout_table_t ct;
1668 1668 callout_id_t coid;
1669 1669 callout_t *coptr;
1670 1670 int tableid;
1671 1671 callout_id_t xid;
1672 1672 ulong_t idhash;
1673 1673 int i, retval;
1674 1674 const mdb_arg_t *arg;
1675 1675 size_t size;
1676 1676 callout_hash_t cot_idhash[CALLOUT_BUCKETS];
1677 1677
1678 1678 coargs.flags = COF_DEFAULT | COF_BYIDH;
1679 1679 i = mdb_getopts(argc, argv,
1680 1680 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags,
1681 1681 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1682 1682 NULL);
1683 1683 argc -= i;
1684 1684 argv += i;
1685 1685
1686 1686 if (argc != 1) {
1687 1687 return (DCMD_USAGE);
1688 1688 }
1689 1689 arg = &argv[0];
1690 1690
1691 1691 if (arg->a_type == MDB_TYPE_IMMEDIATE) {
1692 1692 xid = arg->a_un.a_val;
1693 1693 } else {
1694 1694 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str);
1695 1695 }
1696 1696
1697 1697 if (DCMD_HDRSPEC(flags)) {
1698 1698 coargs.flags |= COF_CHDR;
1699 1699 }
1700 1700
1701 1701
1702 1702 /* initialize from kernel variables */
1703 1703 if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1704 1704 return (retval);
1705 1705 }
1706 1706
1707 1707 /* we must massage the environment so that the macros will play nice */
1708 1708 #define callout_table_mask ((1 << coargs.ctbits) - 1)
1709 1709 #define callout_table_bits coargs.ctbits
1710 1710 #define nsec_per_tick coargs.nsec_per_tick
1711 1711 tableid = CALLOUT_ID_TO_TABLE(xid);
1712 1712 idhash = CALLOUT_IDHASH(xid);
1713 1713 #undef callouts_table_bits
1714 1714 #undef callout_table_mask
1715 1715 #undef nsec_per_tick
1716 1716 coid = CO_PLAIN_ID(xid);
1717 1717
1718 1718 if (flags & DCMD_ADDRSPEC) {
1719 1719 mdb_printf("calloutid does not accept explicit address.\n");
1720 1720 return (DCMD_USAGE);
1721 1721 }
1722 1722
1723 1723 if (coargs.flags & COF_DECODE) {
1724 1724 if (DCMD_HDRSPEC(flags)) {
1725 1725 mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n",
1726 1726 "SEQ", "T", "XL", "XID", "IDHASH");
1727 1727 }
1728 1728 mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n",
1729 1729 TABLE_TO_SEQID(tableid),
1730 1730 co_typenames[tableid & CALLOUT_TYPE_MASK],
1731 1731 (xid & CALLOUT_EXECUTING) ? "X" : " ",
1732 1732 (xid & CALLOUT_LONGTERM) ? "L" : " ",
1733 1733 (long long)coid, idhash);
1734 1734 return (DCMD_OK);
1735 1735 }
1736 1736
1737 1737 /* get our table. Note this relies on the types being correct */
1738 1738 ctptr = coargs.co_table + tableid;
1739 1739 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) {
1740 1740 mdb_warn("failed to read callout_table at %p", ctptr);
1741 1741 return (DCMD_ERR);
1742 1742 }
1743 1743 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
1744 1744 if (ct.ct_idhash != NULL) {
1745 1745 if (mdb_vread(&(cot_idhash), size,
1746 1746 (uintptr_t)ct.ct_idhash) == -1) {
1747 1747 mdb_warn("failed to read id_hash at %p",
1748 1748 ct.ct_idhash);
1749 1749 return (WALK_ERR);
1750 1750 }
1751 1751 }
1752 1752
1753 1753 /* callout at beginning of hash chain */
1754 1754 if (ct.ct_idhash == NULL) {
1755 1755 mdb_printf("id hash chain for this xid is empty\n");
1756 1756 return (DCMD_ERR);
1757 1757 }
1758 1758 coptr = (callout_t *)cot_idhash[idhash].ch_head;
1759 1759 if (coptr == NULL) {
1760 1760 mdb_printf("id hash chain for this xid is empty\n");
1761 1761 return (DCMD_ERR);
1762 1762 }
1763 1763
1764 1764 coargs.ndx = tableid;
1765 1765 coargs.bucket = idhash;
1766 1766
1767 1767 /* use the walker, luke */
1768 1768 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs,
1769 1769 (uintptr_t)coptr) == -1) {
1770 1770 mdb_warn("cannot walk callouts at %p", coptr);
1771 1771 return (WALK_ERR);
1772 1772 }
1773 1773
1774 1774 return (DCMD_OK);
1775 1775 }
1776 1776
1777 1777 void
1778 1778 callout_help(void)
1779 1779 {
1780 1780 mdb_printf("callout: display callouts.\n"
1781 1781 "Given a callout table address, display callouts from table.\n"
1782 1782 "Without an address, display callouts from all tables.\n"
1783 1783 "options:\n"
1784 1784 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n"
1785 1785 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n"
1786 1786 " -x : limit display to callouts which are executing\n"
1787 1787 " -h : limit display to callouts based on hrestime\n"
1788 1788 " -B : limit display to callouts based on absolute time\n"
1789 1789 " -t|a|b nsec: limit display to callouts that expire a(t) time,"
1790 1790 " (a)fter time,\n or (b)efore time. Use -a and -b together "
1791 1791 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n"
1792 1792 " -d : interpret time option to -t|a|b as delta from current time\n"
1793 1793 " -k : use ticks instead of nanoseconds as arguments to"
1794 1794 " -t|a|b. Note that\n ticks are less accurate and may not"
1795 1795 " match other tick times (ie: lbolt).\n"
1796 1796 " -D : display exiration time as delta from current time\n"
1797 1797 " -S seqid : limit display to callouts for this cpu sequence id\n"
1798 1798 " -C addr : limit display to callouts for this cpu pointer\n"
1799 1799 " -f name|addr : limit display to callouts with this function\n"
1800 1800 " -p name|addr : limit display to callouts functions with this"
1801 1801 " parameter\n"
1802 1802 " -T : display the callout table itself, instead of callouts\n"
1803 1803 " -L : display callout lists instead of callouts\n"
1804 1804 " -E : with -T or L, display empty data structures.\n"
1805 1805 " -i : traverse callouts by id hash instead of list hash\n"
1806 1806 " -F : walk free callout list (free list with -i) instead\n"
1807 1807 " -v : display more info for each item\n"
1808 1808 " -V : show details of each level of info as it is traversed\n"
1809 1809 " -H : limit display to callouts in the callout heap\n"
1810 1810 " -Q : limit display to callouts in the callout queue\n"
1811 1811 " -A : show only addresses. Useful for pipelines.\n");
1812 1812 }
1813 1813
1814 1814 void
1815 1815 calloutid_help(void)
1816 1816 {
1817 1817 mdb_printf("calloutid: display callout by id.\n"
1818 1818 "Given an extended callout id, display the callout infomation.\n"
1819 1819 "options:\n"
1820 1820 " -d : do not dereference callout, just decode the id.\n"
1821 1821 " -v : verbose display more info about the callout\n");
1822 1822 }
1823 1823
1824 1824 /*ARGSUSED*/
1825 1825 int
1826 1826 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1827 1827 {
1828 1828 long num_classes, i;
1829 1829 sclass_t *class_tbl;
1830 1830 GElf_Sym g_sclass;
1831 1831 char class_name[PC_CLNMSZ];
1832 1832 size_t tbl_size;
1833 1833
1834 1834 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) {
1835 1835 mdb_warn("failed to find symbol sclass\n");
1836 1836 return (DCMD_ERR);
1837 1837 }
1838 1838
1839 1839 tbl_size = (size_t)g_sclass.st_size;
1840 1840 num_classes = tbl_size / (sizeof (sclass_t));
1841 1841 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC);
1842 1842
1843 1843 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) {
1844 1844 mdb_warn("failed to read sclass");
1845 1845 return (DCMD_ERR);
1846 1846 }
1847 1847
1848 1848 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME",
1849 1849 "INIT FCN", "CLASS FCN");
1850 1850
1851 1851 for (i = 0; i < num_classes; i++) {
1852 1852 if (mdb_vread(class_name, sizeof (class_name),
1853 1853 (uintptr_t)class_tbl[i].cl_name) == -1)
1854 1854 (void) strcpy(class_name, "???");
1855 1855
1856 1856 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name,
1857 1857 class_tbl[i].cl_init, class_tbl[i].cl_funcs);
1858 1858 }
1859 1859
1860 1860 return (DCMD_OK);
1861 1861 }
1862 1862
1863 1863 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */
1864 1864
1865 1865 int
1866 1866 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1867 1867 {
1868 1868 uintptr_t rootdir;
1869 1869 vnode_t vn;
1870 1870 char buf[MAXPATHLEN];
1871 1871
1872 1872 uint_t opt_F = FALSE;
1873 1873
1874 1874 if (mdb_getopts(argc, argv,
1875 1875 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc)
1876 1876 return (DCMD_USAGE);
1877 1877
1878 1878 if (!(flags & DCMD_ADDRSPEC)) {
1879 1879 mdb_warn("expected explicit vnode_t address before ::\n");
1880 1880 return (DCMD_USAGE);
1881 1881 }
1882 1882
1883 1883 if (mdb_readvar(&rootdir, "rootdir") == -1) {
1884 1884 mdb_warn("failed to read rootdir");
1885 1885 return (DCMD_ERR);
1886 1886 }
1887 1887
1888 1888 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1)
1889 1889 return (DCMD_ERR);
1890 1890
1891 1891 if (*buf == '\0') {
1892 1892 mdb_printf("??\n");
1893 1893 return (DCMD_OK);
1894 1894 }
1895 1895
1896 1896 mdb_printf("%s", buf);
1897 1897 if (opt_F && buf[strlen(buf)-1] != '/' &&
1898 1898 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn))
1899 1899 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0));
1900 1900 mdb_printf("\n");
1901 1901
1902 1902 return (DCMD_OK);
1903 1903 }
1904 1904
1905 1905 int
1906 1906 ld_walk_init(mdb_walk_state_t *wsp)
1907 1907 {
1908 1908 wsp->walk_data = (void *)wsp->walk_addr;
1909 1909 return (WALK_NEXT);
1910 1910 }
1911 1911
1912 1912 int
1913 1913 ld_walk_step(mdb_walk_state_t *wsp)
1914 1914 {
1915 1915 int status;
1916 1916 lock_descriptor_t ld;
1917 1917
1918 1918 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) {
1919 1919 mdb_warn("couldn't read lock_descriptor_t at %p\n",
1920 1920 wsp->walk_addr);
1921 1921 return (WALK_ERR);
1922 1922 }
1923 1923
1924 1924 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata);
1925 1925 if (status == WALK_ERR)
1926 1926 return (WALK_ERR);
1927 1927
1928 1928 wsp->walk_addr = (uintptr_t)ld.l_next;
1929 1929 if (wsp->walk_addr == (uintptr_t)wsp->walk_data)
1930 1930 return (WALK_DONE);
1931 1931
1932 1932 return (status);
1933 1933 }
1934 1934
1935 1935 int
1936 1936 lg_walk_init(mdb_walk_state_t *wsp)
1937 1937 {
1938 1938 GElf_Sym sym;
1939 1939
1940 1940 if (mdb_lookup_by_name("lock_graph", &sym) == -1) {
1941 1941 mdb_warn("failed to find symbol 'lock_graph'\n");
1942 1942 return (WALK_ERR);
1943 1943 }
1944 1944
1945 1945 wsp->walk_addr = (uintptr_t)sym.st_value;
1946 1946 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size);
1947 1947
1948 1948 return (WALK_NEXT);
1949 1949 }
1950 1950
1951 1951 typedef struct lg_walk_data {
1952 1952 uintptr_t startaddr;
1953 1953 mdb_walk_cb_t callback;
1954 1954 void *data;
1955 1955 } lg_walk_data_t;
1956 1956
1957 1957 /*
1958 1958 * We can't use ::walk lock_descriptor directly, because the head of each graph
1959 1959 * is really a dummy lock. Rather than trying to dynamically determine if this
1960 1960 * is a dummy node or not, we just filter out the initial element of the
1961 1961 * list.
1962 1962 */
1963 1963 static int
1964 1964 lg_walk_cb(uintptr_t addr, const void *data, void *priv)
1965 1965 {
1966 1966 lg_walk_data_t *lw = priv;
1967 1967
1968 1968 if (addr != lw->startaddr)
1969 1969 return (lw->callback(addr, data, lw->data));
1970 1970
1971 1971 return (WALK_NEXT);
1972 1972 }
1973 1973
1974 1974 int
1975 1975 lg_walk_step(mdb_walk_state_t *wsp)
1976 1976 {
1977 1977 graph_t *graph;
1978 1978 lg_walk_data_t lw;
1979 1979
1980 1980 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data)
1981 1981 return (WALK_DONE);
1982 1982
1983 1983 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) {
1984 1984 mdb_warn("failed to read graph_t at %p", wsp->walk_addr);
1985 1985 return (WALK_ERR);
1986 1986 }
1987 1987
1988 1988 wsp->walk_addr += sizeof (graph);
1989 1989
1990 1990 if (graph == NULL)
1991 1991 return (WALK_NEXT);
1992 1992
1993 1993 lw.callback = wsp->walk_callback;
1994 1994 lw.data = wsp->walk_cbdata;
1995 1995
1996 1996 lw.startaddr = (uintptr_t)&(graph->active_locks);
1997 1997 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1998 1998 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1999 1999 return (WALK_ERR);
2000 2000 }
2001 2001
2002 2002 lw.startaddr = (uintptr_t)&(graph->sleeping_locks);
2003 2003 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
2004 2004 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
2005 2005 return (WALK_ERR);
2006 2006 }
2007 2007
2008 2008 return (WALK_NEXT);
2009 2009 }
2010 2010
2011 2011 /*
2012 2012 * The space available for the path corresponding to the locked vnode depends
2013 2013 * on whether we are printing 32- or 64-bit addresses.
2014 2014 */
2015 2015 #ifdef _LP64
2016 2016 #define LM_VNPATHLEN 20
2017 2017 #else
2018 2018 #define LM_VNPATHLEN 30
2019 2019 #endif
2020 2020
2021 2021 typedef struct mdb_lminfo_proc {
2022 2022 struct {
2023 2023 char u_comm[MAXCOMLEN + 1];
2024 2024 } p_user;
2025 2025 } mdb_lminfo_proc_t;
2026 2026
2027 2027 /*ARGSUSED*/
2028 2028 static int
2029 2029 lminfo_cb(uintptr_t addr, const void *data, void *priv)
2030 2030 {
2031 2031 const lock_descriptor_t *ld = data;
2032 2032 char buf[LM_VNPATHLEN];
2033 2033 mdb_lminfo_proc_t p;
2034 2034 uintptr_t paddr = 0;
2035 2035
2036 2036 if (ld->l_flock.l_pid != 0)
2037 2037 paddr = mdb_pid2proc(ld->l_flock.l_pid, NULL);
2038 2038
2039 2039 if (paddr != 0)
2040 2040 mdb_ctf_vread(&p, "proc_t", "mdb_lminfo_proc_t", paddr, 0);
2041 2041
2042 2042 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ",
2043 2043 addr, ld->l_type == F_RDLCK ? "RD" :
2044 2044 ld->l_type == F_WRLCK ? "WR" : "??",
2045 2045 ld->l_state, ld->l_flock.l_pid,
2046 2046 ld->l_flock.l_pid == 0 ? "<kernel>" :
2047 2047 paddr == 0 ? "<defunct>" : p.p_user.u_comm, ld->l_vnode);
2048 2048
2049 2049 mdb_vnode2path((uintptr_t)ld->l_vnode, buf,
2050 2050 sizeof (buf));
2051 2051 mdb_printf("%s\n", buf);
2052 2052
2053 2053 return (WALK_NEXT);
2054 2054 }
2055 2055
2056 2056 /*ARGSUSED*/
2057 2057 int
2058 2058 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2059 2059 {
2060 2060 if (DCMD_HDRSPEC(flags))
2061 2061 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n",
2062 2062 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH");
2063 2063
2064 2064 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, 0));
2065 2065 }
2066 2066
2067 2067 typedef struct mdb_whereopen {
2068 2068 uint_t mwo_flags;
2069 2069 uintptr_t mwo_target;
2070 2070 boolean_t mwo_found;
2071 2071 } mdb_whereopen_t;
2072 2072
2073 2073 /*ARGSUSED*/
2074 2074 int
2075 2075 whereopen_fwalk(uintptr_t addr, const void *farg, void *arg)
2076 2076 {
2077 2077 const struct file *f = farg;
2078 2078 mdb_whereopen_t *mwo = arg;
2079 2079
2080 2080 if ((uintptr_t)f->f_vnode == mwo->mwo_target) {
2081 2081 if ((mwo->mwo_flags & DCMD_PIPE_OUT) == 0 &&
2082 2082 !mwo->mwo_found) {
2083 2083 mdb_printf("file %p\n", addr);
2084 2084 }
2085 2085 mwo->mwo_found = B_TRUE;
2086 2086 }
2087 2087
2088 2088 return (WALK_NEXT);
2089 2089 }
2090 2090
2091 2091 /*ARGSUSED*/
2092 2092 int
2093 2093 whereopen_pwalk(uintptr_t addr, const void *ignored, void *arg)
2094 2094 {
2095 2095 mdb_whereopen_t *mwo = arg;
2096 2096
2097 2097 mwo->mwo_found = B_FALSE;
2098 2098 if (mdb_pwalk("file", whereopen_fwalk, mwo, addr) == -1) {
2099 2099 mdb_warn("couldn't file walk proc %p", addr);
2100 2100 return (WALK_ERR);
2101 2101 }
2102 2102
2103 2103 if (mwo->mwo_found) {
2104 2104 mdb_printf("%p\n", addr);
2105 2105 }
2106 2106
2107 2107 return (WALK_NEXT);
2108 2108 }
2109 2109
2110 2110 /*ARGSUSED*/
2111 2111 int
2112 2112 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2113 2113 {
2114 2114 mdb_whereopen_t mwo;
2115 2115
2116 2116 if (!(flags & DCMD_ADDRSPEC) || addr == 0)
2117 2117 return (DCMD_USAGE);
2118 2118
2119 2119 mwo.mwo_flags = flags;
2120 2120 mwo.mwo_target = addr;
2121 2121 mwo.mwo_found = B_FALSE;
2122 2122
2123 2123 if (mdb_walk("proc", whereopen_pwalk, &mwo) == -1) {
2124 2124 mdb_warn("can't proc walk");
2125 2125 return (DCMD_ERR);
2126 2126 }
2127 2127
2128 2128 return (DCMD_OK);
2129 2129 }
2130 2130
2131 2131 typedef struct datafmt {
2132 2132 char *hdr1;
2133 2133 char *hdr2;
2134 2134 char *dashes;
2135 2135 char *fmt;
2136 2136 } datafmt_t;
2137 2137
2138 2138 static datafmt_t kmemfmt[] = {
2139 2139 { "cache ", "name ",
2140 2140 "-------------------------", "%-25s " },
2141 2141 { " buf", " size", "------", "%6u " },
2142 2142 { " buf", "in use", "------", "%6u " },
2143 2143 { " buf", " total", "------", "%6u " },
2144 2144 { " memory", " in use", "----------", "%10lu%c " },
2145 2145 { " alloc", " succeed", "---------", "%9u " },
2146 2146 { "alloc", " fail", "-----", "%5u " },
2147 2147 { NULL, NULL, NULL, NULL }
2148 2148 };
2149 2149
2150 2150 static datafmt_t vmemfmt[] = {
2151 2151 { "vmem ", "name ",
2152 2152 "-------------------------", "%-*s " },
2153 2153 { " memory", " in use", "----------", "%9llu%c " },
2154 2154 { " memory", " total", "-----------", "%10llu%c " },
2155 2155 { " memory", " import", "----------", "%9llu%c " },
2156 2156 { " alloc", " succeed", "---------", "%9llu " },
2157 2157 { "alloc", " fail", "-----", "%5llu " },
2158 2158 { NULL, NULL, NULL, NULL }
2159 2159 };
2160 2160
2161 2161 /*ARGSUSED*/
2162 2162 static int
2163 2163 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail)
2164 2164 {
2165 2165 short rounds, prounds;
2166 2166
2167 2167 if (KMEM_DUMPCC(ccp)) {
2168 2168 rounds = ccp->cc_dump_rounds;
2169 2169 prounds = ccp->cc_dump_prounds;
2170 2170 } else {
2171 2171 rounds = ccp->cc_rounds;
2172 2172 prounds = ccp->cc_prounds;
2173 2173 }
2174 2174 if (rounds > 0)
2175 2175 *avail += rounds;
2176 2176 if (prounds > 0)
2177 2177 *avail += prounds;
2178 2178
2179 2179 return (WALK_NEXT);
2180 2180 }
2181 2181
2182 2182 /*ARGSUSED*/
2183 2183 static int
2184 2184 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc)
2185 2185 {
2186 2186 *alloc += ccp->cc_alloc;
2187 2187
2188 2188 return (WALK_NEXT);
2189 2189 }
2190 2190
2191 2191 /*ARGSUSED*/
2192 2192 static int
2193 2193 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail)
2194 2194 {
2195 2195 *avail += sp->slab_chunks - sp->slab_refcnt;
2196 2196
2197 2197 return (WALK_NEXT);
2198 2198 }
2199 2199
2200 2200 typedef struct kmastat_vmem {
2201 2201 uintptr_t kv_addr;
2202 2202 struct kmastat_vmem *kv_next;
2203 2203 size_t kv_meminuse;
2204 2204 int kv_alloc;
2205 2205 int kv_fail;
2206 2206 } kmastat_vmem_t;
2207 2207
2208 2208 typedef struct kmastat_args {
2209 2209 kmastat_vmem_t **ka_kvpp;
2210 2210 uint_t ka_shift;
2211 2211 } kmastat_args_t;
2212 2212
2213 2213 static int
2214 2214 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap)
2215 2215 {
2216 2216 kmastat_vmem_t **kvpp = kap->ka_kvpp;
2217 2217 kmastat_vmem_t *kv;
2218 2218 datafmt_t *dfp = kmemfmt;
2219 2219 int magsize;
2220 2220
2221 2221 int avail, alloc, total;
2222 2222 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) *
2223 2223 cp->cache_slabsize;
2224 2224
2225 2225 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail;
2226 2226 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc;
2227 2227 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail;
2228 2228
2229 2229 magsize = kmem_get_magsize(cp);
2230 2230
2231 2231 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc;
2232 2232 avail = cp->cache_full.ml_total * magsize;
2233 2233 total = cp->cache_buftotal;
2234 2234
2235 2235 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr);
2236 2236 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr);
2237 2237 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr);
2238 2238
2239 2239 for (kv = *kvpp; kv != NULL; kv = kv->kv_next) {
2240 2240 if (kv->kv_addr == (uintptr_t)cp->cache_arena)
2241 2241 goto out;
2242 2242 }
2243 2243
2244 2244 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC);
2245 2245 kv->kv_next = *kvpp;
2246 2246 kv->kv_addr = (uintptr_t)cp->cache_arena;
2247 2247 *kvpp = kv;
2248 2248 out:
2249 2249 kv->kv_meminuse += meminuse;
2250 2250 kv->kv_alloc += alloc;
2251 2251 kv->kv_fail += cp->cache_alloc_fail;
2252 2252
2253 2253 mdb_printf((dfp++)->fmt, cp->cache_name);
2254 2254 mdb_printf((dfp++)->fmt, cp->cache_bufsize);
2255 2255 mdb_printf((dfp++)->fmt, total - avail);
2256 2256 mdb_printf((dfp++)->fmt, total);
2257 2257 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift,
2258 2258 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2259 2259 kap->ka_shift == KILOS ? 'K' : 'B');
2260 2260 mdb_printf((dfp++)->fmt, alloc);
2261 2261 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail);
2262 2262 mdb_printf("\n");
2263 2263
2264 2264 return (WALK_NEXT);
2265 2265 }
2266 2266
2267 2267 static int
2268 2268 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap)
2269 2269 {
2270 2270 kmastat_vmem_t *kv = *kap->ka_kvpp;
2271 2271 size_t len;
2272 2272
2273 2273 while (kv != NULL && kv->kv_addr != addr)
2274 2274 kv = kv->kv_next;
2275 2275
2276 2276 if (kv == NULL || kv->kv_alloc == 0)
2277 2277 return (WALK_NEXT);
2278 2278
2279 2279 len = MIN(17, strlen(v->vm_name));
2280 2280
2281 2281 mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name,
2282 2282 17 - len, "", "", "", "",
2283 2283 kv->kv_meminuse >> kap->ka_shift,
2284 2284 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2285 2285 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail);
2286 2286
2287 2287 return (WALK_NEXT);
2288 2288 }
2289 2289
2290 2290 /*ARGSUSED*/
2291 2291 static int
2292 2292 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp)
2293 2293 {
2294 2294 datafmt_t *dfp = vmemfmt;
2295 2295 const vmem_kstat_t *vkp = &v->vm_kstat;
2296 2296 uintptr_t paddr;
2297 2297 vmem_t parent;
2298 2298 int ident = 0;
2299 2299
2300 2300 for (paddr = (uintptr_t)v->vm_source; paddr != 0; ident += 4) {
2301 2301 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) {
2302 2302 mdb_warn("couldn't trace %p's ancestry", addr);
2303 2303 ident = 0;
2304 2304 break;
2305 2305 }
2306 2306 paddr = (uintptr_t)parent.vm_source;
2307 2307 }
2308 2308
2309 2309 mdb_printf("%*s", ident, "");
2310 2310 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name);
2311 2311 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp,
2312 2312 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2313 2313 *shiftp == KILOS ? 'K' : 'B');
2314 2314 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp,
2315 2315 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2316 2316 *shiftp == KILOS ? 'K' : 'B');
2317 2317 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp,
2318 2318 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2319 2319 *shiftp == KILOS ? 'K' : 'B');
2320 2320 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64);
2321 2321 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64);
2322 2322
2323 2323 mdb_printf("\n");
2324 2324
2325 2325 return (WALK_NEXT);
2326 2326 }
2327 2327
2328 2328 /*ARGSUSED*/
2329 2329 int
2330 2330 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2331 2331 {
2332 2332 kmastat_vmem_t *kv = NULL;
2333 2333 datafmt_t *dfp;
2334 2334 kmastat_args_t ka;
2335 2335
2336 2336 ka.ka_shift = 0;
2337 2337 if (mdb_getopts(argc, argv,
2338 2338 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift,
2339 2339 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift,
2340 2340 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc)
2341 2341 return (DCMD_USAGE);
2342 2342
2343 2343 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2344 2344 mdb_printf("%s ", dfp->hdr1);
2345 2345 mdb_printf("\n");
2346 2346
2347 2347 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2348 2348 mdb_printf("%s ", dfp->hdr2);
2349 2349 mdb_printf("\n");
2350 2350
2351 2351 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2352 2352 mdb_printf("%s ", dfp->dashes);
2353 2353 mdb_printf("\n");
2354 2354
2355 2355 ka.ka_kvpp = &kv;
2356 2356 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) {
2357 2357 mdb_warn("can't walk 'kmem_cache'");
2358 2358 return (DCMD_ERR);
2359 2359 }
2360 2360
2361 2361 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2362 2362 mdb_printf("%s ", dfp->dashes);
2363 2363 mdb_printf("\n");
2364 2364
2365 2365 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) {
2366 2366 mdb_warn("can't walk 'vmem'");
2367 2367 return (DCMD_ERR);
2368 2368 }
2369 2369
2370 2370 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2371 2371 mdb_printf("%s ", dfp->dashes);
2372 2372 mdb_printf("\n");
2373 2373
2374 2374 mdb_printf("\n");
2375 2375
2376 2376 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2377 2377 mdb_printf("%s ", dfp->hdr1);
2378 2378 mdb_printf("\n");
2379 2379
2380 2380 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2381 2381 mdb_printf("%s ", dfp->hdr2);
2382 2382 mdb_printf("\n");
2383 2383
2384 2384 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2385 2385 mdb_printf("%s ", dfp->dashes);
2386 2386 mdb_printf("\n");
2387 2387
2388 2388 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) {
2389 2389 mdb_warn("can't walk 'vmem'");
2390 2390 return (DCMD_ERR);
2391 2391 }
2392 2392
2393 2393 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2394 2394 mdb_printf("%s ", dfp->dashes);
2395 2395 mdb_printf("\n");
2396 2396 return (DCMD_OK);
2397 2397 }
2398 2398
2399 2399 /*
2400 2400 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made
2401 2401 * up of a set of 'struct seg's. We could just scan each seg en masse, but
2402 2402 * unfortunately, a few of the segs are both large and sparse, so we could
2403 2403 * spend quite a bit of time scanning VAs which have no backing pages.
2404 2404 *
2405 2405 * So for the few very sparse segs, we skip the segment itself, and scan
2406 2406 * the allocated vmem_segs in the vmem arena which manages that part of kas.
2407 2407 * Currently, we do this for:
2408 2408 *
2409 2409 * SEG VMEM ARENA
2410 2410 * kvseg heap_arena
2411 2411 * kvseg32 heap32_arena
2412 2412 * kvseg_core heap_core_arena
2413 2413 *
2414 2414 * In addition, we skip the segkpm segment in its entirety, since it is very
2415 2415 * sparse, and contains no new kernel data.
2416 2416 */
2417 2417 typedef struct kgrep_walk_data {
2418 2418 kgrep_cb_func *kg_cb;
2419 2419 void *kg_cbdata;
2420 2420 uintptr_t kg_kvseg;
2421 2421 uintptr_t kg_kvseg32;
2422 2422 uintptr_t kg_kvseg_core;
2423 2423 uintptr_t kg_segkpm;
2424 2424 uintptr_t kg_heap_lp_base;
2425 2425 uintptr_t kg_heap_lp_end;
2426 2426 } kgrep_walk_data_t;
2427 2427
2428 2428 static int
2429 2429 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg)
2430 2430 {
2431 2431 uintptr_t base = (uintptr_t)seg->s_base;
2432 2432
2433 2433 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 ||
2434 2434 addr == kg->kg_kvseg_core)
2435 2435 return (WALK_NEXT);
2436 2436
2437 2437 if ((uintptr_t)seg->s_ops == kg->kg_segkpm)
2438 2438 return (WALK_NEXT);
2439 2439
2440 2440 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata));
2441 2441 }
2442 2442
2443 2443 /*ARGSUSED*/
2444 2444 static int
2445 2445 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2446 2446 {
2447 2447 /*
2448 2448 * skip large page heap address range - it is scanned by walking
2449 2449 * allocated vmem_segs in the heap_lp_arena
2450 2450 */
2451 2451 if (seg->vs_start == kg->kg_heap_lp_base &&
2452 2452 seg->vs_end == kg->kg_heap_lp_end)
2453 2453 return (WALK_NEXT);
2454 2454
2455 2455 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2456 2456 }
2457 2457
2458 2458 /*ARGSUSED*/
2459 2459 static int
2460 2460 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2461 2461 {
2462 2462 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2463 2463 }
2464 2464
2465 2465 static int
2466 2466 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg)
2467 2467 {
2468 2468 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg;
2469 2469
2470 2470 if (strcmp(vmem->vm_name, "heap") != 0 &&
2471 2471 strcmp(vmem->vm_name, "heap32") != 0 &&
2472 2472 strcmp(vmem->vm_name, "heap_core") != 0 &&
2473 2473 strcmp(vmem->vm_name, "heap_lp") != 0)
2474 2474 return (WALK_NEXT);
2475 2475
2476 2476 if (strcmp(vmem->vm_name, "heap_lp") == 0)
2477 2477 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg;
2478 2478
2479 2479 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) {
2480 2480 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr);
2481 2481 return (WALK_ERR);
2482 2482 }
2483 2483
2484 2484 return (WALK_NEXT);
2485 2485 }
2486 2486
2487 2487 int
2488 2488 kgrep_subr(kgrep_cb_func *cb, void *cbdata)
2489 2489 {
2490 2490 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm;
2491 2491 kgrep_walk_data_t kg;
2492 2492
2493 2493 if (mdb_get_state() == MDB_STATE_RUNNING) {
2494 2494 mdb_warn("kgrep can only be run on a system "
2495 2495 "dump or under kmdb; see dumpadm(1M)\n");
2496 2496 return (DCMD_ERR);
2497 2497 }
2498 2498
2499 2499 if (mdb_lookup_by_name("kas", &kas) == -1) {
2500 2500 mdb_warn("failed to locate 'kas' symbol\n");
2501 2501 return (DCMD_ERR);
2502 2502 }
2503 2503
2504 2504 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) {
2505 2505 mdb_warn("failed to locate 'kvseg' symbol\n");
2506 2506 return (DCMD_ERR);
2507 2507 }
2508 2508
2509 2509 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) {
2510 2510 mdb_warn("failed to locate 'kvseg32' symbol\n");
2511 2511 return (DCMD_ERR);
2512 2512 }
2513 2513
2514 2514 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) {
2515 2515 mdb_warn("failed to locate 'kvseg_core' symbol\n");
2516 2516 return (DCMD_ERR);
2517 2517 }
2518 2518
2519 2519 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) {
2520 2520 mdb_warn("failed to locate 'segkpm_ops' symbol\n");
2521 2521 return (DCMD_ERR);
2522 2522 }
2523 2523
2524 2524 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) {
2525 2525 mdb_warn("failed to read 'heap_lp_base'\n");
2526 2526 return (DCMD_ERR);
2527 2527 }
2528 2528
2529 2529 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) {
2530 2530 mdb_warn("failed to read 'heap_lp_end'\n");
2531 2531 return (DCMD_ERR);
2532 2532 }
2533 2533
2534 2534 kg.kg_cb = cb;
2535 2535 kg.kg_cbdata = cbdata;
2536 2536 kg.kg_kvseg = (uintptr_t)kvseg.st_value;
2537 2537 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value;
2538 2538 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value;
2539 2539 kg.kg_segkpm = (uintptr_t)segkpm.st_value;
2540 2540
2541 2541 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg,
2542 2542 &kg, kas.st_value) == -1) {
2543 2543 mdb_warn("failed to walk kas segments");
2544 2544 return (DCMD_ERR);
2545 2545 }
2546 2546
2547 2547 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) {
2548 2548 mdb_warn("failed to walk heap/heap32 vmem arenas");
2549 2549 return (DCMD_ERR);
2550 2550 }
2551 2551
2552 2552 return (DCMD_OK);
2553 2553 }
2554 2554
2555 2555 size_t
2556 2556 kgrep_subr_pagesize(void)
2557 2557 {
2558 2558 return (PAGESIZE);
2559 2559 }
2560 2560
2561 2561 typedef struct file_walk_data {
2562 2562 struct uf_entry *fw_flist;
2563 2563 int fw_flistsz;
2564 2564 int fw_ndx;
2565 2565 int fw_nofiles;
2566 2566 } file_walk_data_t;
2567 2567
2568 2568 typedef struct mdb_file_proc {
2569 2569 struct {
2570 2570 struct {
2571 2571 int fi_nfiles;
2572 2572 uf_entry_t *volatile fi_list;
2573 2573 } u_finfo;
2574 2574 } p_user;
2575 2575 } mdb_file_proc_t;
2576 2576
2577 2577 int
2578 2578 file_walk_init(mdb_walk_state_t *wsp)
2579 2579 {
2580 2580 file_walk_data_t *fw;
2581 2581 mdb_file_proc_t p;
2582 2582
2583 2583 if (wsp->walk_addr == 0) {
2584 2584 mdb_warn("file walk doesn't support global walks\n");
2585 2585 return (WALK_ERR);
2586 2586 }
2587 2587
2588 2588 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP);
2589 2589
2590 2590 if (mdb_ctf_vread(&p, "proc_t", "mdb_file_proc_t",
2591 2591 wsp->walk_addr, 0) == -1) {
2592 2592 mdb_free(fw, sizeof (file_walk_data_t));
2593 2593 mdb_warn("failed to read proc structure at %p", wsp->walk_addr);
2594 2594 return (WALK_ERR);
2595 2595 }
2596 2596
2597 2597 if (p.p_user.u_finfo.fi_nfiles == 0) {
2598 2598 mdb_free(fw, sizeof (file_walk_data_t));
2599 2599 return (WALK_DONE);
2600 2600 }
2601 2601
2602 2602 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles;
2603 2603 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles;
2604 2604 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP);
2605 2605
2606 2606 if (mdb_vread(fw->fw_flist, fw->fw_flistsz,
2607 2607 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) {
2608 2608 mdb_warn("failed to read file array at %p",
2609 2609 p.p_user.u_finfo.fi_list);
2610 2610 mdb_free(fw->fw_flist, fw->fw_flistsz);
2611 2611 mdb_free(fw, sizeof (file_walk_data_t));
2612 2612 return (WALK_ERR);
2613 2613 }
2614 2614
2615 2615 fw->fw_ndx = 0;
2616 2616 wsp->walk_data = fw;
2617 2617
2618 2618 return (WALK_NEXT);
2619 2619 }
2620 2620
2621 2621 int
2622 2622 file_walk_step(mdb_walk_state_t *wsp)
2623 2623 {
2624 2624 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2625 2625 struct file file;
2626 2626 uintptr_t fp;
2627 2627
2628 2628 again:
2629 2629 if (fw->fw_ndx == fw->fw_nofiles)
2630 2630 return (WALK_DONE);
2631 2631
2632 2632 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == 0)
2633 2633 goto again;
2634 2634
2635 2635 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2636 2636 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2637 2637 }
2638 2638
2639 2639 int
2640 2640 allfile_walk_step(mdb_walk_state_t *wsp)
2641 2641 {
2642 2642 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2643 2643 struct file file;
2644 2644 uintptr_t fp;
2645 2645
2646 2646 if (fw->fw_ndx == fw->fw_nofiles)
2647 2647 return (WALK_DONE);
2648 2648
2649 2649 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != 0)
2650 2650 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2651 2651 else
2652 2652 bzero(&file, sizeof (file));
2653 2653
2654 2654 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2655 2655 }
2656 2656
2657 2657 void
2658 2658 file_walk_fini(mdb_walk_state_t *wsp)
2659 2659 {
2660 2660 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2661 2661
2662 2662 mdb_free(fw->fw_flist, fw->fw_flistsz);
2663 2663 mdb_free(fw, sizeof (file_walk_data_t));
2664 2664 }
2665 2665
2666 2666 int
2667 2667 port_walk_init(mdb_walk_state_t *wsp)
2668 2668 {
2669 2669 if (wsp->walk_addr == 0) {
2670 2670 mdb_warn("port walk doesn't support global walks\n");
2671 2671 return (WALK_ERR);
2672 2672 }
2673 2673
2674 2674 if (mdb_layered_walk("file", wsp) == -1) {
2675 2675 mdb_warn("couldn't walk 'file'");
2676 2676 return (WALK_ERR);
2677 2677 }
2678 2678 return (WALK_NEXT);
2679 2679 }
2680 2680
2681 2681 int
2682 2682 port_walk_step(mdb_walk_state_t *wsp)
2683 2683 {
2684 2684 struct vnode vn;
2685 2685 uintptr_t vp;
2686 2686 uintptr_t pp;
2687 2687 struct port port;
2688 2688
2689 2689 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode;
2690 2690 if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2691 2691 mdb_warn("failed to read vnode_t at %p", vp);
2692 2692 return (WALK_ERR);
2693 2693 }
2694 2694 if (vn.v_type != VPORT)
2695 2695 return (WALK_NEXT);
2696 2696
2697 2697 pp = (uintptr_t)vn.v_data;
2698 2698 if (mdb_vread(&port, sizeof (port), pp) == -1) {
2699 2699 mdb_warn("failed to read port_t at %p", pp);
2700 2700 return (WALK_ERR);
2701 2701 }
2702 2702 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata));
2703 2703 }
2704 2704
2705 2705 typedef struct portev_walk_data {
2706 2706 list_node_t *pev_node;
2707 2707 list_node_t *pev_last;
2708 2708 size_t pev_offset;
2709 2709 } portev_walk_data_t;
2710 2710
2711 2711 int
2712 2712 portev_walk_init(mdb_walk_state_t *wsp)
2713 2713 {
2714 2714 portev_walk_data_t *pevd;
2715 2715 struct port port;
2716 2716 struct vnode vn;
2717 2717 struct list *list;
2718 2718 uintptr_t vp;
2719 2719
2720 2720 if (wsp->walk_addr == 0) {
2721 2721 mdb_warn("portev walk doesn't support global walks\n");
2722 2722 return (WALK_ERR);
2723 2723 }
2724 2724
2725 2725 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP);
2726 2726
2727 2727 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) {
2728 2728 mdb_free(pevd, sizeof (portev_walk_data_t));
2729 2729 mdb_warn("failed to read port structure at %p", wsp->walk_addr);
2730 2730 return (WALK_ERR);
2731 2731 }
2732 2732
2733 2733 vp = (uintptr_t)port.port_vnode;
2734 2734 if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2735 2735 mdb_free(pevd, sizeof (portev_walk_data_t));
2736 2736 mdb_warn("failed to read vnode_t at %p", vp);
2737 2737 return (WALK_ERR);
2738 2738 }
2739 2739
2740 2740 if (vn.v_type != VPORT) {
2741 2741 mdb_free(pevd, sizeof (portev_walk_data_t));
2742 2742 mdb_warn("input address (%p) does not point to an event port",
2743 2743 wsp->walk_addr);
2744 2744 return (WALK_ERR);
2745 2745 }
2746 2746
2747 2747 if (port.port_queue.portq_nent == 0) {
2748 2748 mdb_free(pevd, sizeof (portev_walk_data_t));
2749 2749 return (WALK_DONE);
2750 2750 }
2751 2751 list = &port.port_queue.portq_list;
2752 2752 pevd->pev_offset = list->list_offset;
2753 2753 pevd->pev_last = list->list_head.list_prev;
2754 2754 pevd->pev_node = list->list_head.list_next;
2755 2755 wsp->walk_data = pevd;
2756 2756 return (WALK_NEXT);
2757 2757 }
2758 2758
2759 2759 int
2760 2760 portev_walk_step(mdb_walk_state_t *wsp)
2761 2761 {
2762 2762 portev_walk_data_t *pevd;
2763 2763 struct port_kevent ev;
2764 2764 uintptr_t evp;
2765 2765
2766 2766 pevd = (portev_walk_data_t *)wsp->walk_data;
2767 2767
2768 2768 if (pevd->pev_last == NULL)
2769 2769 return (WALK_DONE);
2770 2770 if (pevd->pev_node == pevd->pev_last)
2771 2771 pevd->pev_last = NULL; /* last round */
2772 2772
2773 2773 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset));
2774 2774 if (mdb_vread(&ev, sizeof (ev), evp) == -1) {
2775 2775 mdb_warn("failed to read port_kevent at %p", evp);
2776 2776 return (WALK_DONE);
2777 2777 }
2778 2778 pevd->pev_node = ev.portkev_node.list_next;
2779 2779 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata));
2780 2780 }
2781 2781
2782 2782 void
2783 2783 portev_walk_fini(mdb_walk_state_t *wsp)
2784 2784 {
2785 2785 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data;
2786 2786
2787 2787 if (pevd != NULL)
2788 2788 mdb_free(pevd, sizeof (portev_walk_data_t));
2789 2789 }
2790 2790
2791 2791 typedef struct proc_walk_data {
2792 2792 uintptr_t *pw_stack;
2793 2793 int pw_depth;
2794 2794 int pw_max;
2795 2795 } proc_walk_data_t;
2796 2796
2797 2797 int
2798 2798 proc_walk_init(mdb_walk_state_t *wsp)
2799 2799 {
2800 2800 GElf_Sym sym;
2801 2801 proc_walk_data_t *pw;
2802 2802
2803 2803 if (wsp->walk_addr == 0) {
2804 2804 if (mdb_lookup_by_name("p0", &sym) == -1) {
2805 2805 mdb_warn("failed to read 'practive'");
2806 2806 return (WALK_ERR);
2807 2807 }
2808 2808 wsp->walk_addr = (uintptr_t)sym.st_value;
2809 2809 }
2810 2810
2811 2811 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP);
2812 2812
2813 2813 if (mdb_readvar(&pw->pw_max, "nproc") == -1) {
2814 2814 mdb_warn("failed to read 'nproc'");
2815 2815 mdb_free(pw, sizeof (pw));
2816 2816 return (WALK_ERR);
2817 2817 }
2818 2818
2819 2819 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP);
2820 2820 wsp->walk_data = pw;
2821 2821
2822 2822 return (WALK_NEXT);
2823 2823 }
2824 2824
2825 2825 typedef struct mdb_walk_proc {
2826 2826 struct proc *p_child;
2827 2827 struct proc *p_sibling;
2828 2828 } mdb_walk_proc_t;
2829 2829
2830 2830 int
2831 2831 proc_walk_step(mdb_walk_state_t *wsp)
2832 2832 {
2833 2833 proc_walk_data_t *pw = wsp->walk_data;
2834 2834 uintptr_t addr = wsp->walk_addr;
2835 2835 uintptr_t cld, sib;
2836 2836 int status;
2837 2837 mdb_walk_proc_t pr;
2838 2838
2839 2839 if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2840 2840 addr, 0) == -1) {
2841 2841 mdb_warn("failed to read proc at %p", addr);
2842 2842 return (WALK_DONE);
2843 2843 }
2844 2844
2845 2845 cld = (uintptr_t)pr.p_child;
2846 2846 sib = (uintptr_t)pr.p_sibling;
2847 2847
2848 2848 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) {
2849 2849 pw->pw_depth--;
2850 2850 goto sib;
2851 2851 }
2852 2852
2853 2853 /*
2854 2854 * Always pass NULL as the local copy pointer. Consumers
2855 2855 * should use mdb_ctf_vread() to read their own minimal
2856 2856 * version of proc_t. Thus minimizing the chance of breakage
2857 2857 * with older crash dumps.
2858 2858 */
2859 2859 status = wsp->walk_callback(addr, NULL, wsp->walk_cbdata);
2860 2860
2861 2861 if (status != WALK_NEXT)
2862 2862 return (status);
2863 2863
2864 2864 if ((wsp->walk_addr = cld) != 0) {
2865 2865 if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2866 2866 cld, 0) == -1) {
2867 2867 mdb_warn("proc %p has invalid p_child %p; skipping\n",
2868 2868 addr, cld);
2869 2869 goto sib;
2870 2870 }
2871 2871
2872 2872 pw->pw_stack[pw->pw_depth++] = addr;
2873 2873
2874 2874 if (pw->pw_depth == pw->pw_max) {
2875 2875 mdb_warn("depth %d exceeds max depth; try again\n",
2876 2876 pw->pw_depth);
2877 2877 return (WALK_DONE);
2878 2878 }
2879 2879 return (WALK_NEXT);
2880 2880 }
2881 2881
2882 2882 sib:
2883 2883 /*
2884 2884 * We know that p0 has no siblings, and if another starting proc
2885 2885 * was given, we don't want to walk its siblings anyway.
2886 2886 */
2887 2887 if (pw->pw_depth == 0)
2888 2888 return (WALK_DONE);
2889 2889
2890 2890 if (sib != 0 && mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2891 2891 sib, 0) == -1) {
2892 2892 mdb_warn("proc %p has invalid p_sibling %p; skipping\n",
2893 2893 addr, sib);
2894 2894 sib = 0;
2895 2895 }
2896 2896
2897 2897 if ((wsp->walk_addr = sib) == 0) {
2898 2898 if (pw->pw_depth > 0) {
2899 2899 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1];
2900 2900 return (WALK_NEXT);
2901 2901 }
2902 2902 return (WALK_DONE);
2903 2903 }
2904 2904
2905 2905 return (WALK_NEXT);
2906 2906 }
2907 2907
2908 2908 void
2909 2909 proc_walk_fini(mdb_walk_state_t *wsp)
2910 2910 {
2911 2911 proc_walk_data_t *pw = wsp->walk_data;
2912 2912
2913 2913 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t));
2914 2914 mdb_free(pw, sizeof (proc_walk_data_t));
2915 2915 }
2916 2916
2917 2917 int
2918 2918 task_walk_init(mdb_walk_state_t *wsp)
2919 2919 {
2920 2920 task_t task;
2921 2921
2922 2922 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) {
2923 2923 mdb_warn("failed to read task at %p", wsp->walk_addr);
2924 2924 return (WALK_ERR);
2925 2925 }
2926 2926 wsp->walk_addr = (uintptr_t)task.tk_memb_list;
2927 2927 wsp->walk_data = task.tk_memb_list;
2928 2928 return (WALK_NEXT);
2929 2929 }
2930 2930
2931 2931 typedef struct mdb_task_proc {
2932 2932 struct proc *p_tasknext;
2933 2933 } mdb_task_proc_t;
2934 2934
2935 2935 int
2936 2936 task_walk_step(mdb_walk_state_t *wsp)
2937 2937 {
2938 2938 mdb_task_proc_t proc;
2939 2939 int status;
2940 2940
2941 2941 if (mdb_ctf_vread(&proc, "proc_t", "mdb_task_proc_t",
2942 2942 wsp->walk_addr, 0) == -1) {
2943 2943 mdb_warn("failed to read proc at %p", wsp->walk_addr);
2944 2944 return (WALK_DONE);
2945 2945 }
2946 2946
2947 2947 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata);
2948 2948
2949 2949 if (proc.p_tasknext == wsp->walk_data)
2950 2950 return (WALK_DONE);
2951 2951
2952 2952 wsp->walk_addr = (uintptr_t)proc.p_tasknext;
2953 2953 return (status);
2954 2954 }
2955 2955
2956 2956 int
2957 2957 project_walk_init(mdb_walk_state_t *wsp)
2958 2958 {
2959 2959 if (wsp->walk_addr == 0) {
2960 2960 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) {
2961 2961 mdb_warn("failed to read 'proj0p'");
2962 2962 return (WALK_ERR);
2963 2963 }
2964 2964 }
2965 2965 wsp->walk_data = (void *)wsp->walk_addr;
2966 2966 return (WALK_NEXT);
2967 2967 }
2968 2968
2969 2969 int
2970 2970 project_walk_step(mdb_walk_state_t *wsp)
2971 2971 {
2972 2972 uintptr_t addr = wsp->walk_addr;
2973 2973 kproject_t pj;
2974 2974 int status;
2975 2975
2976 2976 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
2977 2977 mdb_warn("failed to read project at %p", addr);
2978 2978 return (WALK_DONE);
2979 2979 }
2980 2980 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata);
2981 2981 if (status != WALK_NEXT)
2982 2982 return (status);
2983 2983 wsp->walk_addr = (uintptr_t)pj.kpj_next;
2984 2984 if ((void *)wsp->walk_addr == wsp->walk_data)
2985 2985 return (WALK_DONE);
2986 2986 return (WALK_NEXT);
2987 2987 }
2988 2988
2989 2989 static int
2990 2990 generic_walk_step(mdb_walk_state_t *wsp)
2991 2991 {
2992 2992 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
2993 2993 wsp->walk_cbdata));
2994 2994 }
2995 2995
2996 2996 static int
2997 2997 cpu_walk_cmp(const void *l, const void *r)
2998 2998 {
2999 2999 uintptr_t lhs = *((uintptr_t *)l);
3000 3000 uintptr_t rhs = *((uintptr_t *)r);
3001 3001 cpu_t lcpu, rcpu;
3002 3002
3003 3003 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs);
3004 3004 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs);
3005 3005
3006 3006 if (lcpu.cpu_id < rcpu.cpu_id)
3007 3007 return (-1);
3008 3008
3009 3009 if (lcpu.cpu_id > rcpu.cpu_id)
3010 3010 return (1);
3011 3011
3012 3012 return (0);
3013 3013 }
3014 3014
3015 3015 typedef struct cpu_walk {
3016 3016 uintptr_t *cw_array;
3017 3017 int cw_ndx;
3018 3018 } cpu_walk_t;
3019 3019
3020 3020 int
3021 3021 cpu_walk_init(mdb_walk_state_t *wsp)
3022 3022 {
3023 3023 cpu_walk_t *cw;
3024 3024 int max_ncpus, i = 0;
3025 3025 uintptr_t current, first;
3026 3026 cpu_t cpu, panic_cpu;
3027 3027 uintptr_t panicstr, addr;
3028 3028 GElf_Sym sym;
3029 3029
3030 3030 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC);
3031 3031
3032 3032 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
3033 3033 mdb_warn("failed to read 'max_ncpus'");
3034 3034 return (WALK_ERR);
3035 3035 }
3036 3036
3037 3037 if (mdb_readvar(&panicstr, "panicstr") == -1) {
3038 3038 mdb_warn("failed to read 'panicstr'");
3039 3039 return (WALK_ERR);
3040 3040 }
3041 3041
3042 3042 if (panicstr != 0) {
3043 3043 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) {
3044 3044 mdb_warn("failed to find 'panic_cpu'");
3045 3045 return (WALK_ERR);
3046 3046 }
3047 3047
3048 3048 addr = (uintptr_t)sym.st_value;
3049 3049
3050 3050 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) {
3051 3051 mdb_warn("failed to read 'panic_cpu'");
3052 3052 return (WALK_ERR);
3053 3053 }
3054 3054 }
3055 3055
3056 3056 /*
3057 3057 * Unfortunately, there is no platform-independent way to walk
3058 3058 * CPUs in ID order. We therefore loop through in cpu_next order,
3059 3059 * building an array of CPU pointers which will subsequently be
3060 3060 * sorted.
3061 3061 */
3062 3062 cw->cw_array =
3063 3063 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC);
3064 3064
3065 3065 if (mdb_readvar(&first, "cpu_list") == -1) {
3066 3066 mdb_warn("failed to read 'cpu_list'");
3067 3067 return (WALK_ERR);
3068 3068 }
3069 3069
3070 3070 current = first;
3071 3071 do {
3072 3072 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) {
3073 3073 mdb_warn("failed to read cpu at %p", current);
3074 3074 return (WALK_ERR);
3075 3075 }
3076 3076
3077 3077 if (panicstr != 0 && panic_cpu.cpu_id == cpu.cpu_id) {
3078 3078 cw->cw_array[i++] = addr;
3079 3079 } else {
3080 3080 cw->cw_array[i++] = current;
3081 3081 }
3082 3082 } while ((current = (uintptr_t)cpu.cpu_next) != first);
3083 3083
3084 3084 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp);
3085 3085 wsp->walk_data = cw;
3086 3086
3087 3087 return (WALK_NEXT);
3088 3088 }
3089 3089
3090 3090 int
3091 3091 cpu_walk_step(mdb_walk_state_t *wsp)
3092 3092 {
3093 3093 cpu_walk_t *cw = wsp->walk_data;
3094 3094 cpu_t cpu;
3095 3095 uintptr_t addr = cw->cw_array[cw->cw_ndx++];
3096 3096
3097 3097 if (addr == 0)
3098 3098 return (WALK_DONE);
3099 3099
3100 3100 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) {
3101 3101 mdb_warn("failed to read cpu at %p", addr);
3102 3102 return (WALK_DONE);
3103 3103 }
3104 3104
3105 3105 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata));
3106 3106 }
3107 3107
3108 3108 typedef struct cpuinfo_data {
3109 3109 intptr_t cid_cpu;
3110 3110 uintptr_t **cid_ithr;
3111 3111 char cid_print_head;
3112 3112 char cid_print_thr;
3113 3113 char cid_print_ithr;
3114 3114 char cid_print_flags;
3115 3115 } cpuinfo_data_t;
3116 3116
3117 3117 int
3118 3118 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid)
3119 3119 {
3120 3120 cpu_t c;
3121 3121 int id;
3122 3122 uint8_t pil;
3123 3123
3124 3124 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE)
3125 3125 return (WALK_NEXT);
3126 3126
3127 3127 if (thr->t_bound_cpu == NULL) {
3128 3128 mdb_warn("thr %p is intr thread w/out a CPU\n", addr);
3129 3129 return (WALK_NEXT);
3130 3130 }
3131 3131
3132 3132 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu);
3133 3133
3134 3134 if ((id = c.cpu_id) >= NCPU) {
3135 3135 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n",
3136 3136 thr->t_bound_cpu, id, NCPU);
3137 3137 return (WALK_NEXT);
3138 3138 }
3139 3139
3140 3140 if ((pil = thr->t_pil) >= NINTR) {
3141 3141 mdb_warn("thread %p has pil (%d) greater than %d\n",
3142 3142 addr, pil, NINTR);
3143 3143 return (WALK_NEXT);
3144 3144 }
3145 3145
3146 3146 if (cid->cid_ithr[id][pil] != 0) {
3147 3147 mdb_warn("CPU %d has multiple threads at pil %d (at least "
3148 3148 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]);
3149 3149 return (WALK_NEXT);
3150 3150 }
3151 3151
3152 3152 cid->cid_ithr[id][pil] = addr;
3153 3153
3154 3154 return (WALK_NEXT);
3155 3155 }
3156 3156
3157 3157 #define CPUINFO_IDWIDTH 3
3158 3158 #define CPUINFO_FLAGWIDTH 9
3159 3159
3160 3160 #ifdef _LP64
3161 3161 #if defined(__amd64)
3162 3162 #define CPUINFO_TWIDTH 16
3163 3163 #define CPUINFO_CPUWIDTH 16
3164 3164 #else
3165 3165 #define CPUINFO_CPUWIDTH 11
3166 3166 #define CPUINFO_TWIDTH 11
3167 3167 #endif
3168 3168 #else
3169 3169 #define CPUINFO_CPUWIDTH 8
3170 3170 #define CPUINFO_TWIDTH 8
3171 3171 #endif
3172 3172
3173 3173 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9)
3174 3174 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4)
3175 3175 #define CPUINFO_ITHRDELT 4
3176 3176
3177 3177 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \
3178 3178 flagline < nflaglines ? flagbuf[flagline++] : "")
3179 3179
3180 3180 typedef struct mdb_cpuinfo_proc {
3181 3181 struct {
3182 3182 char u_comm[MAXCOMLEN + 1];
3183 3183 } p_user;
3184 3184 } mdb_cpuinfo_proc_t;
3185 3185
3186 3186 int
3187 3187 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid)
3188 3188 {
3189 3189 kthread_t t;
3190 3190 disp_t disp;
3191 3191 mdb_cpuinfo_proc_t p;
3192 3192 uintptr_t pinned;
3193 3193 char **flagbuf;
3194 3194 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT;
3195 3195
3196 3196 const char *flags[] = {
3197 3197 "RUNNING", "READY", "QUIESCED", "EXISTS",
3198 3198 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN",
3199 3199 "SPARE", "FAULTED", "DISABLED", NULL
3200 3200 };
3201 3201
3202 3202 if (cid->cid_cpu != -1) {
3203 3203 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu)
3204 3204 return (WALK_NEXT);
3205 3205
3206 3206 /*
3207 3207 * Set cid_cpu to -1 to indicate that we found a matching CPU.
3208 3208 */
3209 3209 cid->cid_cpu = -1;
3210 3210 rval = WALK_DONE;
3211 3211 }
3212 3212
3213 3213 if (cid->cid_print_head) {
3214 3214 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n",
3215 3215 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL",
3216 3216 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD",
3217 3217 "PROC");
3218 3218 cid->cid_print_head = FALSE;
3219 3219 }
3220 3220
3221 3221 bspl = cpu->cpu_base_spl;
3222 3222
3223 3223 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) {
3224 3224 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp);
3225 3225 return (WALK_ERR);
3226 3226 }
3227 3227
3228 3228 mdb_printf("%3d %0*p %3x %4d %4d ",
3229 3229 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags,
3230 3230 disp.disp_nrunnable, bspl);
3231 3231
3232 3232 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) {
3233 3233 mdb_printf("%3d ", t.t_pri);
3234 3234 } else {
3235 3235 mdb_printf("%3s ", "-");
3236 3236 }
3237 3237
3238 3238 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no",
3239 3239 cpu->cpu_kprunrun ? "yes" : "no");
3240 3240
3241 3241 if (cpu->cpu_last_swtch) {
3242 3242 mdb_printf("t-%-4d ",
3243 3243 (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch);
3244 3244 } else {
3245 3245 mdb_printf("%-6s ", "-");
3246 3246 }
3247 3247
3248 3248 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread);
3249 3249
3250 3250 if (cpu->cpu_thread == cpu->cpu_idle_thread)
3251 3251 mdb_printf(" (idle)\n");
3252 3252 else if (cpu->cpu_thread == NULL)
3253 3253 mdb_printf(" -\n");
3254 3254 else {
3255 3255 if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t",
3256 3256 (uintptr_t)t.t_procp, 0) != -1) {
3257 3257 mdb_printf(" %s\n", p.p_user.u_comm);
3258 3258 } else {
3259 3259 mdb_printf(" ?\n");
3260 3260 }
3261 3261 }
3262 3262
3263 3263 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC);
3264 3264
3265 3265 if (cid->cid_print_flags) {
3266 3266 int first = 1, i, j, k;
3267 3267 char *s;
3268 3268
3269 3269 cid->cid_print_head = TRUE;
3270 3270
3271 3271 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) {
3272 3272 if (!(cpu->cpu_flags & i))
3273 3273 continue;
3274 3274
3275 3275 if (first) {
3276 3276 s = mdb_alloc(CPUINFO_THRDELT + 1,
3277 3277 UM_GC | UM_SLEEP);
3278 3278
3279 3279 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1,
3280 3280 "%*s|%*s", CPUINFO_FLAGDELT, "",
3281 3281 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, "");
3282 3282 flagbuf[nflaglines++] = s;
3283 3283 }
3284 3284
3285 3285 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP);
3286 3286 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s",
3287 3287 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH -
3288 3288 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j],
3289 3289 first ? "<--+" : "");
3290 3290
3291 3291 for (k = strlen(s); k < CPUINFO_THRDELT; k++)
3292 3292 s[k] = ' ';
3293 3293 s[k] = '\0';
3294 3294
3295 3295 flagbuf[nflaglines++] = s;
3296 3296 first = 0;
3297 3297 }
3298 3298 }
3299 3299
3300 3300 if (cid->cid_print_ithr) {
3301 3301 int i, found_one = FALSE;
3302 3302 int print_thr = disp.disp_nrunnable && cid->cid_print_thr;
3303 3303
3304 3304 for (i = NINTR - 1; i >= 0; i--) {
3305 3305 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i];
3306 3306
3307 3307 if (iaddr == 0)
3308 3308 continue;
3309 3309
3310 3310 if (!found_one) {
3311 3311 found_one = TRUE;
3312 3312
3313 3313 CPUINFO_INDENT;
3314 3314 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ',
3315 3315 CPUINFO_ITHRDELT, "");
3316 3316
3317 3317 CPUINFO_INDENT;
3318 3318 mdb_printf("%c%*s+--> %3s %s\n",
3319 3319 print_thr ? '|' : ' ', CPUINFO_ITHRDELT,
3320 3320 "", "PIL", "THREAD");
3321 3321 }
3322 3322
3323 3323 if (mdb_vread(&t, sizeof (t), iaddr) == -1) {
3324 3324 mdb_warn("failed to read kthread_t at %p",
3325 3325 iaddr);
3326 3326 return (WALK_ERR);
3327 3327 }
3328 3328
3329 3329 CPUINFO_INDENT;
3330 3330 mdb_printf("%c%*s %3d %0*p\n",
3331 3331 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "",
3332 3332 t.t_pil, CPUINFO_TWIDTH, iaddr);
3333 3333
3334 3334 pinned = (uintptr_t)t.t_intr;
3335 3335 }
3336 3336
3337 3337 if (found_one && pinned != 0) {
3338 3338 cid->cid_print_head = TRUE;
3339 3339 (void) strcpy(p.p_user.u_comm, "?");
3340 3340
3341 3341 if (mdb_vread(&t, sizeof (t),
3342 3342 (uintptr_t)pinned) == -1) {
3343 3343 mdb_warn("failed to read kthread_t at %p",
3344 3344 pinned);
3345 3345 return (WALK_ERR);
3346 3346 }
3347 3347 if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t",
3348 3348 (uintptr_t)t.t_procp, 0) == -1) {
3349 3349 mdb_warn("failed to read proc_t at %p",
3350 3350 t.t_procp);
3351 3351 return (WALK_ERR);
3352 3352 }
3353 3353
3354 3354 CPUINFO_INDENT;
3355 3355 mdb_printf("%c%*s %3s %0*p %s\n",
3356 3356 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-",
3357 3357 CPUINFO_TWIDTH, pinned,
3358 3358 pinned == (uintptr_t)cpu->cpu_idle_thread ?
3359 3359 "(idle)" : p.p_user.u_comm);
3360 3360 }
3361 3361 }
3362 3362
3363 3363 if (disp.disp_nrunnable && cid->cid_print_thr) {
3364 3364 dispq_t *dq;
3365 3365
3366 3366 int i, npri = disp.disp_npri;
3367 3367
3368 3368 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC);
3369 3369
3370 3370 if (mdb_vread(dq, sizeof (dispq_t) * npri,
3371 3371 (uintptr_t)disp.disp_q) == -1) {
3372 3372 mdb_warn("failed to read dispq_t at %p", disp.disp_q);
3373 3373 return (WALK_ERR);
3374 3374 }
3375 3375
3376 3376 CPUINFO_INDENT;
3377 3377 mdb_printf("|\n");
3378 3378
3379 3379 CPUINFO_INDENT;
3380 3380 mdb_printf("+--> %3s %-*s %s\n", "PRI",
3381 3381 CPUINFO_TWIDTH, "THREAD", "PROC");
3382 3382
3383 3383 for (i = npri - 1; i >= 0; i--) {
3384 3384 uintptr_t taddr = (uintptr_t)dq[i].dq_first;
3385 3385
3386 3386 while (taddr != 0) {
3387 3387 if (mdb_vread(&t, sizeof (t), taddr) == -1) {
3388 3388 mdb_warn("failed to read kthread_t "
3389 3389 "at %p", taddr);
3390 3390 return (WALK_ERR);
3391 3391 }
3392 3392 if (mdb_ctf_vread(&p, "proc_t",
3393 3393 "mdb_cpuinfo_proc_t",
3394 3394 (uintptr_t)t.t_procp, 0) == -1) {
3395 3395 mdb_warn("failed to read proc_t at %p",
3396 3396 t.t_procp);
3397 3397 return (WALK_ERR);
3398 3398 }
3399 3399
3400 3400 CPUINFO_INDENT;
3401 3401 mdb_printf(" %3d %0*p %s\n", t.t_pri,
3402 3402 CPUINFO_TWIDTH, taddr, p.p_user.u_comm);
3403 3403
3404 3404 taddr = (uintptr_t)t.t_link;
3405 3405 }
3406 3406 }
3407 3407 cid->cid_print_head = TRUE;
3408 3408 }
3409 3409
3410 3410 while (flagline < nflaglines)
3411 3411 mdb_printf("%s\n", flagbuf[flagline++]);
3412 3412
3413 3413 if (cid->cid_print_head)
3414 3414 mdb_printf("\n");
3415 3415
3416 3416 return (rval);
3417 3417 }
3418 3418
3419 3419 int
3420 3420 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3421 3421 {
3422 3422 uint_t verbose = FALSE;
3423 3423 cpuinfo_data_t cid;
3424 3424
3425 3425 cid.cid_print_ithr = FALSE;
3426 3426 cid.cid_print_thr = FALSE;
3427 3427 cid.cid_print_flags = FALSE;
3428 3428 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE;
3429 3429 cid.cid_cpu = -1;
3430 3430
3431 3431 if (flags & DCMD_ADDRSPEC)
3432 3432 cid.cid_cpu = addr;
3433 3433
3434 3434 if (mdb_getopts(argc, argv,
3435 3435 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
3436 3436 return (DCMD_USAGE);
3437 3437
3438 3438 if (verbose) {
3439 3439 cid.cid_print_ithr = TRUE;
3440 3440 cid.cid_print_thr = TRUE;
3441 3441 cid.cid_print_flags = TRUE;
3442 3442 cid.cid_print_head = TRUE;
3443 3443 }
3444 3444
3445 3445 if (cid.cid_print_ithr) {
3446 3446 int i;
3447 3447
3448 3448 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **)
3449 3449 * NCPU, UM_SLEEP | UM_GC);
3450 3450
3451 3451 for (i = 0; i < NCPU; i++)
3452 3452 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) *
3453 3453 NINTR, UM_SLEEP | UM_GC);
3454 3454
3455 3455 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread,
3456 3456 &cid) == -1) {
3457 3457 mdb_warn("couldn't walk thread");
3458 3458 return (DCMD_ERR);
3459 3459 }
3460 3460 }
3461 3461
3462 3462 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) {
3463 3463 mdb_warn("can't walk cpus");
3464 3464 return (DCMD_ERR);
3465 3465 }
3466 3466
3467 3467 if (cid.cid_cpu != -1) {
3468 3468 /*
3469 3469 * We didn't find this CPU when we walked through the CPUs
3470 3470 * (i.e. the address specified doesn't show up in the "cpu"
3471 3471 * walk). However, the specified address may still correspond
3472 3472 * to a valid cpu_t (for example, if the specified address is
3473 3473 * the actual panicking cpu_t and not the cached panic_cpu).
3474 3474 * Point is: even if we didn't find it, we still want to try
3475 3475 * to print the specified address as a cpu_t.
3476 3476 */
3477 3477 cpu_t cpu;
3478 3478
3479 3479 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) {
3480 3480 mdb_warn("%p is neither a valid CPU ID nor a "
3481 3481 "valid cpu_t address\n", cid.cid_cpu);
3482 3482 return (DCMD_ERR);
3483 3483 }
3484 3484
3485 3485 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid);
3486 3486 }
3487 3487
3488 3488 return (DCMD_OK);
3489 3489 }
3490 3490
3491 3491 /*ARGSUSED*/
3492 3492 int
3493 3493 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3494 3494 {
3495 3495 int i;
3496 3496
3497 3497 if (!(flags & DCMD_ADDRSPEC))
3498 3498 return (DCMD_USAGE);
3499 3499
3500 3500 for (i = 0; i < sizeof (addr) * NBBY; i++)
3501 3501 mdb_printf("%p\n", addr ^ (1UL << i));
3502 3502
3503 3503 return (DCMD_OK);
3504 3504 }
3505 3505
3506 3506 typedef struct mdb_as2proc_proc {
3507 3507 struct as *p_as;
3508 3508 } mdb_as2proc_proc_t;
3509 3509
3510 3510 /*ARGSUSED*/
3511 3511 int
3512 3512 as2proc_walk(uintptr_t addr, const void *ignored, struct as **asp)
3513 3513 {
3514 3514 mdb_as2proc_proc_t p;
3515 3515
3516 3516 mdb_ctf_vread(&p, "proc_t", "mdb_as2proc_proc_t", addr, 0);
3517 3517
3518 3518 if (p.p_as == *asp)
3519 3519 mdb_printf("%p\n", addr);
3520 3520 return (WALK_NEXT);
3521 3521 }
3522 3522
3523 3523 /*ARGSUSED*/
3524 3524 int
3525 3525 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3526 3526 {
3527 3527 if (!(flags & DCMD_ADDRSPEC) || argc != 0)
3528 3528 return (DCMD_USAGE);
3529 3529
3530 3530 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) {
3531 3531 mdb_warn("failed to walk proc");
3532 3532 return (DCMD_ERR);
3533 3533 }
3534 3534
3535 3535 return (DCMD_OK);
3536 3536 }
3537 3537
3538 3538 typedef struct mdb_ptree_proc {
3539 3539 struct proc *p_parent;
3540 3540 struct {
3541 3541 char u_comm[MAXCOMLEN + 1];
3542 3542 } p_user;
3543 3543 } mdb_ptree_proc_t;
3544 3544
3545 3545 /*ARGSUSED*/
3546 3546 int
3547 3547 ptree_walk(uintptr_t addr, const void *ignored, void *data)
3548 3548 {
3549 3549 mdb_ptree_proc_t proc;
3550 3550 mdb_ptree_proc_t parent;
3551 3551 int ident = 0;
3552 3552 uintptr_t paddr;
3553 3553
3554 3554 mdb_ctf_vread(&proc, "proc_t", "mdb_ptree_proc_t", addr, 0);
3555 3555
3556 3556 for (paddr = (uintptr_t)proc.p_parent; paddr != 0; ident += 5) {
3557 3557 mdb_ctf_vread(&parent, "proc_t", "mdb_ptree_proc_t", paddr, 0);
3558 3558 paddr = (uintptr_t)parent.p_parent;
3559 3559 }
3560 3560
3561 3561 mdb_inc_indent(ident);
3562 3562 mdb_printf("%0?p %s\n", addr, proc.p_user.u_comm);
3563 3563 mdb_dec_indent(ident);
3564 3564
3565 3565 return (WALK_NEXT);
3566 3566 }
3567 3567
3568 3568 void
3569 3569 ptree_ancestors(uintptr_t addr, uintptr_t start)
3570 3570 {
3571 3571 mdb_ptree_proc_t p;
3572 3572
3573 3573 if (mdb_ctf_vread(&p, "proc_t", "mdb_ptree_proc_t", addr, 0) == -1) {
3574 3574 mdb_warn("couldn't read ancestor at %p", addr);
3575 3575 return;
3576 3576 }
3577 3577
3578 3578 if (p.p_parent != NULL)
3579 3579 ptree_ancestors((uintptr_t)p.p_parent, start);
3580 3580
3581 3581 if (addr != start)
3582 3582 (void) ptree_walk(addr, &p, NULL);
3583 3583 }
3584 3584
3585 3585 /*ARGSUSED*/
3586 3586 int
3587 3587 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3588 3588 {
3589 3589 if (!(flags & DCMD_ADDRSPEC))
3590 3590 addr = 0;
3591 3591 else
3592 3592 ptree_ancestors(addr, addr);
3593 3593
3594 3594 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) {
3595 3595 mdb_warn("couldn't walk 'proc'");
3596 3596 return (DCMD_ERR);
3597 3597 }
3598 3598
3599 3599 return (DCMD_OK);
3600 3600 }
3601 3601
3602 3602 typedef struct mdb_fd_proc {
3603 3603 struct {
3604 3604 struct {
3605 3605 int fi_nfiles;
3606 3606 uf_entry_t *volatile fi_list;
3607 3607 } u_finfo;
3608 3608 } p_user;
3609 3609 } mdb_fd_proc_t;
3610 3610
3611 3611 /*ARGSUSED*/
3612 3612 static int
3613 3613 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3614 3614 {
3615 3615 int fdnum;
3616 3616 const mdb_arg_t *argp = &argv[0];
3617 3617 mdb_fd_proc_t p;
3618 3618 uf_entry_t uf;
3619 3619
3620 3620 if ((flags & DCMD_ADDRSPEC) == 0) {
3621 3621 mdb_warn("fd doesn't give global information\n");
3622 3622 return (DCMD_ERR);
3623 3623 }
3624 3624 if (argc != 1)
3625 3625 return (DCMD_USAGE);
3626 3626
3627 3627 if (argp->a_type == MDB_TYPE_IMMEDIATE)
3628 3628 fdnum = argp->a_un.a_val;
3629 3629 else
3630 3630 fdnum = mdb_strtoull(argp->a_un.a_str);
3631 3631
3632 3632 if (mdb_ctf_vread(&p, "proc_t", "mdb_fd_proc_t", addr, 0) == -1) {
3633 3633 mdb_warn("couldn't read proc_t at %p", addr);
3634 3634 return (DCMD_ERR);
3635 3635 }
3636 3636 if (fdnum > p.p_user.u_finfo.fi_nfiles) {
3637 3637 mdb_warn("process %p only has %d files open.\n",
3638 3638 addr, p.p_user.u_finfo.fi_nfiles);
3639 3639 return (DCMD_ERR);
3640 3640 }
3641 3641 if (mdb_vread(&uf, sizeof (uf_entry_t),
3642 3642 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) {
3643 3643 mdb_warn("couldn't read uf_entry_t at %p",
3644 3644 &p.p_user.u_finfo.fi_list[fdnum]);
3645 3645 return (DCMD_ERR);
3646 3646 }
3647 3647
3648 3648 mdb_printf("%p\n", uf.uf_file);
3649 3649 return (DCMD_OK);
3650 3650 }
3651 3651
3652 3652 /*ARGSUSED*/
3653 3653 static int
3654 3654 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3655 3655 {
3656 3656 pid_t pid = (pid_t)addr;
3657 3657
3658 3658 if (argc != 0)
3659 3659 return (DCMD_USAGE);
3660 3660
3661 3661 if ((addr = mdb_pid2proc(pid, NULL)) == 0) {
3662 3662 mdb_warn("PID 0t%d not found\n", pid);
3663 3663 return (DCMD_ERR);
3664 3664 }
3665 3665
3666 3666 mdb_printf("%p\n", addr);
3667 3667 return (DCMD_OK);
3668 3668 }
3669 3669
3670 3670 static char *sysfile_cmd[] = {
3671 3671 "exclude:",
3672 3672 "include:",
3673 3673 "forceload:",
3674 3674 "rootdev:",
3675 3675 "rootfs:",
3676 3676 "swapdev:",
3677 3677 "swapfs:",
3678 3678 "moddir:",
3679 3679 "set",
3680 3680 "unknown",
3681 3681 };
3682 3682
3683 3683 static char *sysfile_ops[] = { "", "=", "&", "|" };
3684 3684
3685 3685 /*ARGSUSED*/
3686 3686 static int
3687 3687 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target)
3688 3688 {
3689 3689 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) {
3690 3690 *target = NULL;
3691 3691 return (WALK_DONE);
3692 3692 }
3693 3693 return (WALK_NEXT);
3694 3694 }
3695 3695
3696 3696 /*ARGSUSED*/
3697 3697 static int
3698 3698 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3699 3699 {
3700 3700 struct sysparam *sysp, sys;
3701 3701 char var[256];
3702 3702 char modname[256];
3703 3703 char val[256];
3704 3704 char strval[256];
3705 3705 vmem_t *mod_sysfile_arena;
3706 3706 void *straddr;
3707 3707
3708 3708 if (mdb_readvar(&sysp, "sysparam_hd") == -1) {
3709 3709 mdb_warn("failed to read sysparam_hd");
3710 3710 return (DCMD_ERR);
3711 3711 }
3712 3712
3713 3713 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) {
3714 3714 mdb_warn("failed to read mod_sysfile_arena");
3715 3715 return (DCMD_ERR);
3716 3716 }
3717 3717
3718 3718 while (sysp != NULL) {
3719 3719 var[0] = '\0';
3720 3720 val[0] = '\0';
3721 3721 modname[0] = '\0';
3722 3722 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) {
3723 3723 mdb_warn("couldn't read sysparam %p", sysp);
3724 3724 return (DCMD_ERR);
3725 3725 }
3726 3726 if (sys.sys_modnam != NULL &&
3727 3727 mdb_readstr(modname, 256,
3728 3728 (uintptr_t)sys.sys_modnam) == -1) {
3729 3729 mdb_warn("couldn't read modname in %p", sysp);
3730 3730 return (DCMD_ERR);
3731 3731 }
3732 3732 if (sys.sys_ptr != NULL &&
3733 3733 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) {
3734 3734 mdb_warn("couldn't read ptr in %p", sysp);
3735 3735 return (DCMD_ERR);
3736 3736 }
3737 3737 if (sys.sys_op != SETOP_NONE) {
3738 3738 /*
3739 3739 * Is this an int or a string? We determine this
3740 3740 * by checking whether straddr is contained in
3741 3741 * mod_sysfile_arena. If so, the walker will set
3742 3742 * straddr to NULL.
3743 3743 */
3744 3744 straddr = (void *)(uintptr_t)sys.sys_info;
3745 3745 if (sys.sys_op == SETOP_ASSIGN &&
3746 3746 sys.sys_info != 0 &&
3747 3747 mdb_pwalk("vmem_seg",
3748 3748 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr,
3749 3749 (uintptr_t)mod_sysfile_arena) == 0 &&
3750 3750 straddr == NULL &&
3751 3751 mdb_readstr(strval, 256,
3752 3752 (uintptr_t)sys.sys_info) != -1) {
3753 3753 (void) mdb_snprintf(val, sizeof (val), "\"%s\"",
3754 3754 strval);
3755 3755 } else {
3756 3756 (void) mdb_snprintf(val, sizeof (val),
3757 3757 "0x%llx [0t%llu]", sys.sys_info,
3758 3758 sys.sys_info);
3759 3759 }
3760 3760 }
3761 3761 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type],
3762 3762 modname, modname[0] == '\0' ? "" : ":",
3763 3763 var, sysfile_ops[sys.sys_op], val);
3764 3764
3765 3765 sysp = sys.sys_next;
3766 3766 }
3767 3767
3768 3768 return (DCMD_OK);
3769 3769 }
3770 3770
3771 3771 int
3772 3772 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp)
3773 3773 {
3774 3774
3775 3775 if (*didp == thr->t_did) {
3776 3776 mdb_printf("%p\n", addr);
3777 3777 return (WALK_DONE);
3778 3778 } else
3779 3779 return (WALK_NEXT);
3780 3780 }
3781 3781
3782 3782 /*ARGSUSED*/
3783 3783 int
3784 3784 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3785 3785 {
3786 3786 const mdb_arg_t *argp = &argv[0];
3787 3787 kt_did_t did;
3788 3788
3789 3789 if (argc != 1)
3790 3790 return (DCMD_USAGE);
3791 3791
3792 3792 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str);
3793 3793
3794 3794 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) {
3795 3795 mdb_warn("failed to walk thread");
3796 3796 return (DCMD_ERR);
3797 3797
3798 3798 }
3799 3799 return (DCMD_OK);
3800 3800
3801 3801 }
3802 3802
3803 3803 static int
3804 3804 errorq_walk_init(mdb_walk_state_t *wsp)
3805 3805 {
3806 3806 if (wsp->walk_addr == 0 &&
3807 3807 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) {
3808 3808 mdb_warn("failed to read errorq_list");
3809 3809 return (WALK_ERR);
3810 3810 }
3811 3811
3812 3812 return (WALK_NEXT);
3813 3813 }
3814 3814
3815 3815 static int
3816 3816 errorq_walk_step(mdb_walk_state_t *wsp)
3817 3817 {
3818 3818 uintptr_t addr = wsp->walk_addr;
3819 3819 errorq_t eq;
3820 3820
3821 3821 if (addr == 0)
3822 3822 return (WALK_DONE);
3823 3823
3824 3824 if (mdb_vread(&eq, sizeof (eq), addr) == -1) {
3825 3825 mdb_warn("failed to read errorq at %p", addr);
3826 3826 return (WALK_ERR);
3827 3827 }
3828 3828
3829 3829 wsp->walk_addr = (uintptr_t)eq.eq_next;
3830 3830 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata));
3831 3831 }
3832 3832
3833 3833 typedef struct eqd_walk_data {
3834 3834 uintptr_t *eqd_stack;
3835 3835 void *eqd_buf;
3836 3836 ulong_t eqd_qpos;
3837 3837 ulong_t eqd_qlen;
3838 3838 size_t eqd_size;
3839 3839 } eqd_walk_data_t;
3840 3840
3841 3841 /*
3842 3842 * In order to walk the list of pending error queue elements, we push the
3843 3843 * addresses of the corresponding data buffers in to the eqd_stack array.
3844 3844 * The error lists are in reverse chronological order when iterating using
3845 3845 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the
3846 3846 * walker client gets addresses in order from oldest error to newest error.
3847 3847 */
3848 3848 static void
3849 3849 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr)
3850 3850 {
3851 3851 errorq_elem_t eqe;
3852 3852
3853 3853 while (addr != 0) {
3854 3854 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) {
3855 3855 mdb_warn("failed to read errorq element at %p", addr);
3856 3856 break;
3857 3857 }
3858 3858
3859 3859 if (eqdp->eqd_qpos == eqdp->eqd_qlen) {
3860 3860 mdb_warn("errorq is overfull -- more than %lu "
3861 3861 "elems found\n", eqdp->eqd_qlen);
3862 3862 break;
3863 3863 }
3864 3864
3865 3865 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data;
3866 3866 addr = (uintptr_t)eqe.eqe_prev;
3867 3867 }
3868 3868 }
3869 3869
3870 3870 static int
3871 3871 eqd_walk_init(mdb_walk_state_t *wsp)
3872 3872 {
3873 3873 eqd_walk_data_t *eqdp;
3874 3874 errorq_elem_t eqe, *addr;
3875 3875 errorq_t eq;
3876 3876 ulong_t i;
3877 3877
3878 3878 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) {
3879 3879 mdb_warn("failed to read errorq at %p", wsp->walk_addr);
3880 3880 return (WALK_ERR);
3881 3881 }
3882 3882
3883 3883 if (eq.eq_ptail != NULL &&
3884 3884 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) {
3885 3885 mdb_warn("failed to read errorq element at %p", eq.eq_ptail);
3886 3886 return (WALK_ERR);
3887 3887 }
3888 3888
3889 3889 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP);
3890 3890 wsp->walk_data = eqdp;
3891 3891
3892 3892 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP);
3893 3893 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP);
3894 3894 eqdp->eqd_qlen = eq.eq_qlen;
3895 3895 eqdp->eqd_qpos = 0;
3896 3896 eqdp->eqd_size = eq.eq_size;
3897 3897
3898 3898 /*
3899 3899 * The newest elements in the queue are on the pending list, so we
3900 3900 * push those on to our stack first.
3901 3901 */
3902 3902 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend);
3903 3903
3904 3904 /*
3905 3905 * If eq_ptail is set, it may point to a subset of the errors on the
3906 3906 * pending list in the event a atomic_cas_ptr() failed; if ptail's
3907 3907 * data is already in our stack, NULL out eq_ptail and ignore it.
3908 3908 */
3909 3909 if (eq.eq_ptail != NULL) {
3910 3910 for (i = 0; i < eqdp->eqd_qpos; i++) {
3911 3911 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) {
3912 3912 eq.eq_ptail = NULL;
3913 3913 break;
3914 3914 }
3915 3915 }
3916 3916 }
3917 3917
3918 3918 /*
3919 3919 * If eq_phead is set, it has the processing list in order from oldest
3920 3920 * to newest. Use this to recompute eq_ptail as best we can and then
3921 3921 * we nicely fall into eqd_push_list() of eq_ptail below.
3922 3922 */
3923 3923 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe),
3924 3924 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next)
3925 3925 eq.eq_ptail = addr;
3926 3926
3927 3927 /*
3928 3928 * The oldest elements in the queue are on the processing list, subject
3929 3929 * to machinations in the if-clauses above. Push any such elements.
3930 3930 */
3931 3931 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail);
3932 3932 return (WALK_NEXT);
3933 3933 }
3934 3934
3935 3935 static int
3936 3936 eqd_walk_step(mdb_walk_state_t *wsp)
3937 3937 {
3938 3938 eqd_walk_data_t *eqdp = wsp->walk_data;
3939 3939 uintptr_t addr;
3940 3940
3941 3941 if (eqdp->eqd_qpos == 0)
3942 3942 return (WALK_DONE);
3943 3943
3944 3944 addr = eqdp->eqd_stack[--eqdp->eqd_qpos];
3945 3945
3946 3946 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) {
3947 3947 mdb_warn("failed to read errorq data at %p", addr);
3948 3948 return (WALK_ERR);
3949 3949 }
3950 3950
3951 3951 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata));
3952 3952 }
3953 3953
3954 3954 static void
3955 3955 eqd_walk_fini(mdb_walk_state_t *wsp)
3956 3956 {
3957 3957 eqd_walk_data_t *eqdp = wsp->walk_data;
3958 3958
3959 3959 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen);
3960 3960 mdb_free(eqdp->eqd_buf, eqdp->eqd_size);
3961 3961 mdb_free(eqdp, sizeof (eqd_walk_data_t));
3962 3962 }
3963 3963
3964 3964 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64)
3965 3965
3966 3966 static int
3967 3967 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3968 3968 {
3969 3969 int i;
3970 3970 errorq_t eq;
3971 3971 uint_t opt_v = FALSE;
3972 3972
3973 3973 if (!(flags & DCMD_ADDRSPEC)) {
3974 3974 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) {
3975 3975 mdb_warn("can't walk 'errorq'");
3976 3976 return (DCMD_ERR);
3977 3977 }
3978 3978 return (DCMD_OK);
3979 3979 }
3980 3980
3981 3981 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL);
3982 3982 argc -= i;
3983 3983 argv += i;
3984 3984
3985 3985 if (argc != 0)
3986 3986 return (DCMD_USAGE);
3987 3987
3988 3988 if (opt_v || DCMD_HDRSPEC(flags)) {
3989 3989 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ",
3990 3990 "ADDR", "NAME", "S", "V", "N");
3991 3991 if (!opt_v) {
3992 3992 mdb_printf("%7s %7s %7s%</u>\n",
3993 3993 "ACCEPT", "DROP", "LOG");
3994 3994 } else {
3995 3995 mdb_printf("%5s %6s %6s %3s %16s%</u>\n",
3996 3996 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC");
3997 3997 }
3998 3998 }
3999 3999
4000 4000 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) {
4001 4001 mdb_warn("failed to read errorq at %p", addr);
4002 4002 return (DCMD_ERR);
4003 4003 }
4004 4004
4005 4005 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name,
4006 4006 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-',
4007 4007 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ',
4008 4008 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' ');
4009 4009
4010 4010 if (!opt_v) {
4011 4011 mdb_printf("%7llu %7llu %7llu\n",
4012 4012 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed),
4013 4013 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) +
4014 4014 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged));
4015 4015 } else {
4016 4016 mdb_printf("%5s %6lu %6lu %3u %a\n",
4017 4017 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func);
4018 4018 mdb_printf("%38s\n%41s"
4019 4019 "%12s %llu\n"
4020 4020 "%53s %llu\n"
4021 4021 "%53s %llu\n"
4022 4022 "%53s %llu\n"
4023 4023 "%53s %llu\n"
4024 4024 "%53s %llu\n"
4025 4025 "%53s %llu\n"
4026 4026 "%53s %llu\n\n",
4027 4027 "|", "+-> ",
4028 4028 "DISPATCHED", EQKSVAL(eq, eqk_dispatched),
4029 4029 "DROPPED", EQKSVAL(eq, eqk_dropped),
4030 4030 "LOGGED", EQKSVAL(eq, eqk_logged),
4031 4031 "RESERVED", EQKSVAL(eq, eqk_reserved),
4032 4032 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail),
4033 4033 "COMMITTED", EQKSVAL(eq, eqk_committed),
4034 4034 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail),
4035 4035 "CANCELLED", EQKSVAL(eq, eqk_cancelled));
4036 4036 }
4037 4037
4038 4038 return (DCMD_OK);
4039 4039 }
4040 4040
4041 4041 /*ARGSUSED*/
4042 4042 static int
4043 4043 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4044 4044 {
4045 4045 cpu_t panic_cpu;
4046 4046 kthread_t *panic_thread;
4047 4047 void *buf;
4048 4048 panic_data_t *pd;
4049 4049 int i, n;
4050 4050
4051 4051 if (!mdb_prop_postmortem) {
4052 4052 mdb_warn("panicinfo can only be run on a system "
4053 4053 "dump; see dumpadm(1M)\n");
4054 4054 return (DCMD_ERR);
4055 4055 }
4056 4056
4057 4057 if (flags & DCMD_ADDRSPEC || argc != 0)
4058 4058 return (DCMD_USAGE);
4059 4059
4060 4060 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1)
4061 4061 mdb_warn("failed to read 'panic_cpu'");
4062 4062 else
4063 4063 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id);
4064 4064
4065 4065 if (mdb_readvar(&panic_thread, "panic_thread") == -1)
4066 4066 mdb_warn("failed to read 'panic_thread'");
4067 4067 else
4068 4068 mdb_printf("%16s %?p\n", "thread", panic_thread);
4069 4069
4070 4070 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP);
4071 4071 pd = (panic_data_t *)buf;
4072 4072
4073 4073 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 ||
4074 4074 pd->pd_version != PANICBUFVERS) {
4075 4075 mdb_warn("failed to read 'panicbuf'");
4076 4076 mdb_free(buf, PANICBUFSIZE);
4077 4077 return (DCMD_ERR);
4078 4078 }
4079 4079
4080 4080 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff);
4081 4081
4082 4082 n = (pd->pd_msgoff - (sizeof (panic_data_t) -
4083 4083 sizeof (panic_nv_t))) / sizeof (panic_nv_t);
4084 4084
4085 4085 for (i = 0; i < n; i++)
4086 4086 mdb_printf("%16s %?llx\n",
4087 4087 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value);
4088 4088
4089 4089 mdb_free(buf, PANICBUFSIZE);
4090 4090 return (DCMD_OK);
4091 4091 }
4092 4092
4093 4093 /*
4094 4094 * ::time dcmd, which will print a hires timestamp of when we entered the
4095 4095 * debugger, or the lbolt value if used with the -l option.
4096 4096 *
4097 4097 */
4098 4098 /*ARGSUSED*/
4099 4099 static int
4100 4100 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4101 4101 {
4102 4102 uint_t opt_dec = FALSE;
4103 4103 uint_t opt_lbolt = FALSE;
4104 4104 uint_t opt_hex = FALSE;
4105 4105 const char *fmt;
4106 4106 hrtime_t result;
4107 4107
4108 4108 if (mdb_getopts(argc, argv,
4109 4109 'd', MDB_OPT_SETBITS, TRUE, &opt_dec,
4110 4110 'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt,
4111 4111 'x', MDB_OPT_SETBITS, TRUE, &opt_hex,
4112 4112 NULL) != argc)
4113 4113 return (DCMD_USAGE);
4114 4114
4115 4115 if (opt_dec && opt_hex)
4116 4116 return (DCMD_USAGE);
4117 4117
4118 4118 result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime();
4119 4119 fmt =
4120 4120 opt_hex ? "0x%llx\n" :
4121 4121 opt_dec ? "0t%lld\n" : "%#llr\n";
4122 4122
4123 4123 mdb_printf(fmt, result);
4124 4124 return (DCMD_OK);
4125 4125 }
4126 4126
4127 4127 void
4128 4128 time_help(void)
4129 4129 {
4130 4130 mdb_printf("Prints the system time in nanoseconds.\n\n"
4131 4131 "::time will return the timestamp at which we dropped into, \n"
4132 4132 "if called from, kmdb(1); the core dump's high resolution \n"
4133 4133 "time if inspecting one; or the running hires time if we're \n"
4134 4134 "looking at a live system.\n\n"
4135 4135 "Switches:\n"
4136 4136 " -d report times in decimal\n"
4137 4137 " -l prints the number of clock ticks since system boot\n"
4138 4138 " -x report times in hexadecimal\n");
4139 4139 }
4140 4140
4141 4141 extern int cmd_refstr(uintptr_t, uint_t, int, const mdb_arg_t *);
4142 4142
4143 4143 static const mdb_dcmd_t dcmds[] = {
4144 4144
4145 4145 /* from genunix.c */
4146 4146 { "as2proc", ":", "convert as to proc_t address", as2proc },
4147 4147 { "binding_hash_entry", ":", "print driver names hash table entry",
4148 4148 binding_hash_entry },
4149 4149 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]"
4150 4150 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]"
4151 4151 " [-FivVA]",
4152 4152 "display callouts", callout, callout_help },
4153 4153 { "calloutid", "[-d|v] xid", "print callout by extended id",
4154 4154 calloutid, calloutid_help },
4155 4155 { "class", NULL, "print process scheduler classes", class },
4156 4156 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo },
4157 4157 { "did2thread", "? kt_did", "find kernel thread for this id",
4158 4158 did2thread },
4159 4159 { "errorq", "?[-v]", "display kernel error queues", errorq },
4160 4160 { "fd", ":[fd num]", "get a file pointer from an fd", fd },
4161 4161 { "flipone", ":", "the vik_rev_level 2 special", flipone },
4162 4162 { "lminfo", NULL, "print lock manager information", lminfo },
4163 4163 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl },
4164 4164 { "panicinfo", NULL, "print panic information", panicinfo },
4165 4165 { "pid2proc", "?", "convert PID to proc_t address", pid2proc },
4166 4166 { "project", NULL, "display kernel project(s)", project },
4167 4167 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps,
4168 4168 ps_help },
4169 4169 { "pflags", NULL, "display various proc_t flags", pflags },
4170 4170 { "pgrep", "[-x] [-n | -o] pattern",
4171 4171 "pattern match against all processes", pgrep },
4172 4172 { "ptree", NULL, "print process tree", ptree },
4173 4173 { "refstr", NULL, "print string from a refstr_t", cmd_refstr, NULL },
4174 4174 { "sysevent", "?[-sv]", "print sysevent pending or sent queue",
4175 4175 sysevent},
4176 4176 { "sysevent_channel", "?", "print sysevent channel database",
4177 4177 sysevent_channel},
4178 4178 { "sysevent_class_list", ":", "print sysevent class list",
4179 4179 sysevent_class_list},
4180 4180 { "sysevent_subclass_list", ":",
4181 4181 "print sysevent subclass list", sysevent_subclass_list},
4182 4182 { "system", NULL, "print contents of /etc/system file", sysfile },
4183 4183 { "task", NULL, "display kernel task(s)", task },
4184 4184 { "time", "[-dlx]", "display system time", time, time_help },
4185 4185 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path },
4186 4186 { "whereopen", ":", "given a vnode, dumps procs which have it open",
4187 4187 whereopen },
4188 4188
4189 4189 /* from bio.c */
4190 4190 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind },
4191 4191
4192 4192 /* from bitset.c */
4193 4193 { "bitset", ":", "display a bitset", bitset, bitset_help },
4194 4194
4195 4195 /* from contract.c */
4196 4196 { "contract", "?", "display a contract", cmd_contract },
4197 4197 { "ctevent", ":", "display a contract event", cmd_ctevent },
4198 4198 { "ctid", ":", "convert id to a contract pointer", cmd_ctid },
4199 4199
4200 4200 /* from cpupart.c */
4201 4201 { "cpupart", "?[-v]", "print cpu partition info", cpupart },
4202 4202
4203 4203 /* from cred.c */
4204 4204 { "cred", ":[-v]", "display a credential", cmd_cred },
4205 4205 { "credgrp", ":[-v]", "display cred_t groups", cmd_credgrp },
4206 4206 { "credsid", ":[-v]", "display a credsid_t", cmd_credsid },
4207 4207 { "ksidlist", ":[-v]", "display a ksidlist_t", cmd_ksidlist },
4208 4208
4209 4209 /* from cyclic.c */
4210 4210 { "cyccover", NULL, "dump cyclic coverage information", cyccover },
4211 4211 { "cycid", "?", "dump a cyclic id", cycid },
4212 4212 { "cycinfo", "?", "dump cyc_cpu info", cycinfo },
4213 4213 { "cyclic", ":", "developer information", cyclic },
4214 4214 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace },
4215 4215
4216 4216 /* from damap.c */
4217 4217 { "damap", ":", "display a damap_t", damap, damap_help },
4218 4218
4219 4219 /* from ddi_periodic.c */
4220 4220 { "ddi_periodic", "?[-v]", "dump ddi_periodic_impl_t info", dprinfo },
4221 4221
4222 4222 /* from devinfo.c */
4223 4223 { "devbindings", "?[-qs] [device-name | major-num]",
4224 4224 "print devinfo nodes bound to device-name or major-num",
4225 4225 devbindings, devinfo_help },
4226 4226 { "devinfo", ":[-qsd] [-b bus]", "detailed devinfo of one node",
4227 4227 devinfo, devinfo_help },
4228 4228 { "devinfo_audit", ":[-v]", "devinfo configuration audit record",
4229 4229 devinfo_audit },
4230 4230 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log",
4231 4231 devinfo_audit_log },
4232 4232 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history",
4233 4233 devinfo_audit_node },
4234 4234 { "devinfo2driver", ":", "find driver name for this devinfo node",
4235 4235 devinfo2driver },
4236 4236 { "devnames", "?[-vm] [num]", "print devnames array", devnames },
4237 4237 { "dev2major", "?<dev_t>", "convert dev_t to a major number",
4238 4238 dev2major },
4239 4239 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number",
4240 4240 dev2minor },
4241 4241 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers",
4242 4242 devt },
4243 4243 { "major2name", "?<major-num>", "convert major number to dev name",
4244 4244 major2name },
4245 4245 { "minornodes", ":", "given a devinfo node, print its minor nodes",
4246 4246 minornodes },
4247 4247 { "modctl2devinfo", ":", "given a modctl, list its devinfos",
4248 4248 modctl2devinfo },
4249 4249 { "name2major", "<dev-name>", "convert dev name to major number",
4250 4250 name2major },
4251 4251 { "prtconf", "?[-vpc] [-d driver] [-i inst]", "print devinfo tree",
4252 4252 prtconf, prtconf_help },
4253 4253 { "softstate", ":<instance>", "retrieve soft-state pointer",
4254 4254 softstate },
4255 4255 { "devinfo_fm", ":", "devinfo fault managment configuration",
4256 4256 devinfo_fm },
4257 4257 { "devinfo_fmce", ":", "devinfo fault managment cache entry",
4258 4258 devinfo_fmce},
4259 4259
4260 4260 /* from findstack.c */
4261 4261 { "findstack", ":[-v]", "find kernel thread stack", findstack },
4262 4262 { "findstack_debug", NULL, "toggle findstack debugging",
4263 4263 findstack_debug },
4264 4264 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] "
4265 4265 "[-s sobj | -S sobj] [-t tstate | -T tstate]",
4266 4266 "print unique kernel thread stacks",
4267 4267 stacks, stacks_help },
4268 4268
4269 4269 /* from fm.c */
4270 4270 { "ereport", "[-v]", "print ereports logged in dump",
4271 4271 ereport },
4272 4272
4273 4273 /* from group.c */
4274 4274 { "group", "?[-q]", "display a group", group},
4275 4275
4276 4276 /* from hotplug.c */
4277 4277 { "hotplug", "?[-p]", "display a registered hotplug attachment",
4278 4278 hotplug, hotplug_help },
4279 4279
4280 4280 /* from irm.c */
4281 4281 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd },
4282 4282 { "irmreqs", NULL, "display interrupt requests in an interrupt pool",
4283 4283 irmreqs_dcmd },
4284 4284 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd },
4285 4285
|
↓ open down ↓ |
4285 lines elided |
↑ open up ↑ |
4286 4286 /* from kgrep.c + genunix.c */
4287 4287 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep,
4288 4288 kgrep_help },
4289 4289
4290 4290 /* from kmem.c */
4291 4291 { "allocdby", ":", "given a thread, print its allocated buffers",
4292 4292 allocdby },
4293 4293 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] "
4294 4294 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help },
4295 4295 { "freedby", ":", "given a thread, print its freed buffers", freedby },
4296 - { "kmalog", "?[ fail | slab ]",
4297 - "display kmem transaction log and stack traces", kmalog },
4296 + { "kmalog", "?[ fail | slab | zerosized ]",
4297 + "display kmem transaction log and stack traces for specified type",
4298 + kmalog },
4298 4299 { "kmastat", "[-kmg]", "kernel memory allocator stats",
4299 4300 kmastat },
4300 4301 { "kmausers", "?[-ef] [cache ...]", "current medium and large users "
4301 4302 "of the kmem allocator", kmausers, kmausers_help },
4302 4303 { "kmem_cache", "?[-n name]",
4303 4304 "print kernel memory caches", kmem_cache, kmem_cache_help},
4304 4305 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] "
4305 4306 "[-B minbinsize]", "display slab usage per kmem cache",
4306 4307 kmem_slabs, kmem_slabs_help },
4307 4308 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug },
4308 4309 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log },
4309 4310 { "kmem_verify", "?", "check integrity of kmem-managed memory",
4310 4311 kmem_verify },
4311 4312 { "vmem", "?", "print a vmem_t", vmem },
4312 4313 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] "
4313 4314 "[-m minsize] [-M maxsize] [-t thread] [-T type]",
4314 4315 "print or filter a vmem_seg", vmem_seg, vmem_seg_help },
4315 4316 { "whatthread", ":[-v]", "print threads whose stack contains the "
4316 4317 "given address", whatthread },
4317 4318
4318 4319 /* from ldi.c */
4319 4320 { "ldi_handle", "?[-i]", "display a layered driver handle",
4320 4321 ldi_handle, ldi_handle_help },
4321 4322 { "ldi_ident", NULL, "display a layered driver identifier",
4322 4323 ldi_ident, ldi_ident_help },
4323 4324
4324 4325 /* from leaky.c + leaky_subr.c */
4325 4326 { "findleaks", FINDLEAKS_USAGE,
4326 4327 "search for potential kernel memory leaks", findleaks,
4327 4328 findleaks_help },
4328 4329
4329 4330 /* from lgrp.c */
4330 4331 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp},
4331 4332 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set},
4332 4333
4333 4334 /* from log.c */
4334 4335 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf },
4335 4336
4336 4337 /* from mdi.c */
4337 4338 { "mdipi", NULL, "given a path, dump mdi_pathinfo "
4338 4339 "and detailed pi_prop list", mdipi },
4339 4340 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list",
4340 4341 mdiprops },
4341 4342 { "mdiphci", NULL, "given a phci, dump mdi_phci and "
4342 4343 "list all paths", mdiphci },
4343 4344 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list "
4344 4345 "all phcis", mdivhci },
4345 4346 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo "
4346 4347 "client links", mdiclient_paths },
4347 4348 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo "
4348 4349 "phci links", mdiphci_paths },
4349 4350 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links",
4350 4351 mdiphcis },
4351 4352
4352 4353 /* from memory.c */
4353 4354 { "addr2smap", ":[offset]", "translate address to smap", addr2smap },
4354 4355 { "memlist", "?[-iav]", "display a struct memlist", memlist },
4355 4356 { "memstat", NULL, "display memory usage summary", memstat },
4356 4357 { "page", "?", "display a summarized page_t", page },
4357 4358 { "pagelookup", "?[-v vp] [-o offset]",
4358 4359 "find the page_t with the name {vp, offset}",
4359 4360 pagelookup, pagelookup_help },
4360 4361 { "page_num2pp", ":", "find the page_t for a given page frame number",
4361 4362 page_num2pp },
4362 4363 { "pmap", ":[-q]", "print process memory map", pmap },
4363 4364 { "seg", ":", "print address space segment", seg },
4364 4365 { "swapinfo", "?", "display a struct swapinfo", swapinfof },
4365 4366 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap },
4366 4367
4367 4368 /* from mmd.c */
4368 4369 { "multidata", ":[-sv]", "display a summarized multidata_t",
4369 4370 multidata },
4370 4371 { "pattbl", ":", "display a summarized multidata attribute table",
4371 4372 pattbl },
4372 4373 { "pattr2multidata", ":", "print multidata pointer from pattr_t",
4373 4374 pattr2multidata },
4374 4375 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t",
4375 4376 pdesc2slab },
4376 4377 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify },
4377 4378 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t",
4378 4379 slab2multidata },
4379 4380
4380 4381 /* from modhash.c */
4381 4382 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]",
4382 4383 "display information about one or all mod_hash structures",
4383 4384 modhash, modhash_help },
4384 4385 { "modent", ":[-k | -v | -t type]",
4385 4386 "display information about a mod_hash_entry", modent,
4386 4387 modent_help },
4387 4388
4388 4389 /* from net.c */
4389 4390 { "dladm", "?<sub-command> [flags]", "show data link information",
4390 4391 dladm, dladm_help },
4391 4392 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload",
4392 4393 mi },
4393 4394 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]",
4394 4395 "show network statistics", netstat },
4395 4396 { "sonode", "?[-f inet | inet6 | unix | #] "
4396 4397 "[-t stream | dgram | raw | #] [-p #]",
4397 4398 "filter and display sonode", sonode },
4398 4399
4399 4400 /* from netstack.c */
4400 4401 { "netstack", "", "show stack instances", netstack },
4401 4402 { "netstackid2netstack", ":",
4402 4403 "translate a netstack id to its netstack_t",
4403 4404 netstackid2netstack },
4404 4405
4405 4406 /* from nvpair.c */
4406 4407 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR,
4407 4408 nvpair_print },
4408 4409 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR,
4409 4410 print_nvlist },
4410 4411
4411 4412 /* from pg.c */
4412 4413 { "pg", "?[-q]", "display a pg", pg},
4413 4414
4414 4415 /* from rctl.c */
4415 4416 { "rctl_dict", "?", "print systemwide default rctl definitions",
4416 4417 rctl_dict },
4417 4418 { "rctl_list", ":[handle]", "print rctls for the given proc",
4418 4419 rctl_list },
4419 4420 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle",
4420 4421 rctl },
4421 4422 { "rctl_validate", ":[-v] [-n #]", "test resource control value "
4422 4423 "sequence", rctl_validate },
4423 4424
4424 4425 /* from sobj.c */
4425 4426 { "rwlock", ":", "dump out a readers/writer lock", rwlock },
4426 4427 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex,
4427 4428 mutex_help },
4428 4429 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts },
4429 4430 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo },
4430 4431 { "turnstile", "?", "display a turnstile", turnstile },
4431 4432
4432 4433 /* from stream.c */
4433 4434 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]",
4434 4435 "print an mblk", mblk_prt, mblk_help },
4435 4436 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify },
4436 4437 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address",
4437 4438 mblk2dblk },
4438 4439 { "q2otherq", ":", "print peer queue for a given queue", q2otherq },
4439 4440 { "q2rdq", ":", "print read queue for a given queue", q2rdq },
4440 4441 { "q2syncq", ":", "print syncq for a given queue", q2syncq },
4441 4442 { "q2stream", ":", "print stream pointer for a given queue", q2stream },
4442 4443 { "q2wrq", ":", "print write queue for a given queue", q2wrq },
4443 4444 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]",
4444 4445 "filter and display STREAM queue", queue, queue_help },
4445 4446 { "stdata", ":[-q|v] [-f flag] [-F flag]",
4446 4447 "filter and display STREAM head", stdata, stdata_help },
4447 4448 { "str2mate", ":", "print mate of this stream", str2mate },
4448 4449 { "str2wrq", ":", "print write queue of this stream", str2wrq },
4449 4450 { "stream", ":", "display STREAM", stream },
4450 4451 { "strftevent", ":", "print STREAMS flow trace event", strftevent },
4451 4452 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]",
4452 4453 "filter and display STREAM sync queue", syncq, syncq_help },
4453 4454 { "syncq2q", ":", "print queue for a given syncq", syncq2q },
4454 4455
4455 4456 /* from taskq.c */
4456 4457 { "taskq", ":[-atT] [-m min_maxq] [-n name]",
4457 4458 "display a taskq", taskq, taskq_help },
4458 4459 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent },
4459 4460
4460 4461 /* from thread.c */
4461 4462 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread,
4462 4463 thread_help },
4463 4464 { "threadlist", "?[-t] [-v [count]]",
4464 4465 "display threads and associated C stack traces", threadlist,
4465 4466 threadlist_help },
4466 4467 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo,
4467 4468 stackinfo_help },
4468 4469
4469 4470 /* from tsd.c */
4470 4471 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd },
4471 4472 { "tsdtot", ":", "find thread with this tsd", tsdtot },
4472 4473
4473 4474 /*
4474 4475 * typegraph does not work under kmdb, as it requires too much memory
4475 4476 * for its internal data structures.
4476 4477 */
4477 4478 #ifndef _KMDB
4478 4479 /* from typegraph.c */
4479 4480 { "findlocks", ":", "find locks held by specified thread", findlocks },
4480 4481 { "findfalse", "?[-v]", "find potentially falsely shared structures",
4481 4482 findfalse },
4482 4483 { "typegraph", NULL, "build type graph", typegraph },
4483 4484 { "istype", ":type", "manually set object type", istype },
4484 4485 { "notype", ":", "manually clear object type", notype },
4485 4486 { "whattype", ":", "determine object type", whattype },
4486 4487 #endif
4487 4488
4488 4489 /* from vfs.c */
4489 4490 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo },
4490 4491 { "pfiles", ":[-fp]", "print process file information", pfiles,
4491 4492 pfiles_help },
4492 4493
4493 4494 /* from zone.c */
4494 4495 { "zid2zone", ":", "find the zone_t with the given zone id",
4495 4496 zid2zone },
4496 4497 { "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt },
4497 4498 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for "
4498 4499 "selected zones", zsd },
4499 4500
4500 4501 #ifndef _KMDB
4501 4502 { "gcore", NULL, "generate a user core for the given process",
4502 4503 gcore_dcmd },
4503 4504 #endif
4504 4505
4505 4506 { NULL }
4506 4507 };
4507 4508
4508 4509 static const mdb_walker_t walkers[] = {
4509 4510
4510 4511 /* from genunix.c */
4511 4512 { "callouts_bytime", "walk callouts by list chain (expiration time)",
4512 4513 callout_walk_init, callout_walk_step, callout_walk_fini,
4513 4514 (void *)CALLOUT_WALK_BYLIST },
4514 4515 { "callouts_byid", "walk callouts by id hash chain",
4515 4516 callout_walk_init, callout_walk_step, callout_walk_fini,
4516 4517 (void *)CALLOUT_WALK_BYID },
4517 4518 { "callout_list", "walk a callout list", callout_list_walk_init,
4518 4519 callout_list_walk_step, callout_list_walk_fini },
4519 4520 { "callout_table", "walk callout table array", callout_table_walk_init,
4520 4521 callout_table_walk_step, callout_table_walk_fini },
4521 4522 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step },
4522 4523 { "dnlc", "walk dnlc entries",
4523 4524 dnlc_walk_init, dnlc_walk_step, dnlc_walk_fini },
4524 4525 { "ereportq_dump", "walk list of ereports in dump error queue",
4525 4526 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL },
4526 4527 { "ereportq_pend", "walk list of ereports in pending error queue",
4527 4528 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL },
4528 4529 { "errorq", "walk list of system error queues",
4529 4530 errorq_walk_init, errorq_walk_step, NULL },
4530 4531 { "errorq_data", "walk pending error queue data buffers",
4531 4532 eqd_walk_init, eqd_walk_step, eqd_walk_fini },
4532 4533 { "allfile", "given a proc pointer, list all file pointers",
4533 4534 file_walk_init, allfile_walk_step, file_walk_fini },
4534 4535 { "file", "given a proc pointer, list of open file pointers",
4535 4536 file_walk_init, file_walk_step, file_walk_fini },
4536 4537 { "lock_descriptor", "walk lock_descriptor_t structures",
4537 4538 ld_walk_init, ld_walk_step, NULL },
4538 4539 { "lock_graph", "walk lock graph",
4539 4540 lg_walk_init, lg_walk_step, NULL },
4540 4541 { "port", "given a proc pointer, list of created event ports",
4541 4542 port_walk_init, port_walk_step, NULL },
4542 4543 { "portev", "given a port pointer, list of events in the queue",
4543 4544 portev_walk_init, portev_walk_step, portev_walk_fini },
4544 4545 { "proc", "list of active proc_t structures",
4545 4546 proc_walk_init, proc_walk_step, proc_walk_fini },
4546 4547 { "projects", "walk a list of kernel projects",
4547 4548 project_walk_init, project_walk_step, NULL },
4548 4549 { "sysevent_pend", "walk sysevent pending queue",
4549 4550 sysevent_pend_walk_init, sysevent_walk_step,
4550 4551 sysevent_walk_fini},
4551 4552 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init,
4552 4553 sysevent_walk_step, sysevent_walk_fini},
4553 4554 { "sysevent_channel", "walk sysevent channel subscriptions",
4554 4555 sysevent_channel_walk_init, sysevent_channel_walk_step,
4555 4556 sysevent_channel_walk_fini},
4556 4557 { "sysevent_class_list", "walk sysevent subscription's class list",
4557 4558 sysevent_class_list_walk_init, sysevent_class_list_walk_step,
4558 4559 sysevent_class_list_walk_fini},
4559 4560 { "sysevent_subclass_list",
4560 4561 "walk sysevent subscription's subclass list",
4561 4562 sysevent_subclass_list_walk_init,
4562 4563 sysevent_subclass_list_walk_step,
4563 4564 sysevent_subclass_list_walk_fini},
4564 4565 { "task", "given a task pointer, walk its processes",
4565 4566 task_walk_init, task_walk_step, NULL },
4566 4567
4567 4568 /* from avl.c */
4568 4569 { AVL_WALK_NAME, AVL_WALK_DESC,
4569 4570 avl_walk_init, avl_walk_step, avl_walk_fini },
4570 4571
4571 4572 /* from bio.c */
4572 4573 { "buf", "walk the bio buf hash",
4573 4574 buf_walk_init, buf_walk_step, buf_walk_fini },
4574 4575
4575 4576 /* from contract.c */
4576 4577 { "contract", "walk all contracts, or those of the specified type",
4577 4578 ct_walk_init, generic_walk_step, NULL },
4578 4579 { "ct_event", "walk events on a contract event queue",
4579 4580 ct_event_walk_init, generic_walk_step, NULL },
4580 4581 { "ct_listener", "walk contract event queue listeners",
4581 4582 ct_listener_walk_init, generic_walk_step, NULL },
4582 4583
4583 4584 /* from cpupart.c */
4584 4585 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition",
4585 4586 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step,
4586 4587 NULL },
4587 4588 { "cpupart_walk", "walk the set of cpu partitions",
4588 4589 cpupart_walk_init, cpupart_walk_step, NULL },
4589 4590
4590 4591 /* from ctxop.c */
4591 4592 { "ctxop", "walk list of context ops on a thread",
4592 4593 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini },
4593 4594
4594 4595 /* from cyclic.c */
4595 4596 { "cyccpu", "walk per-CPU cyc_cpu structures",
4596 4597 cyccpu_walk_init, cyccpu_walk_step, NULL },
4597 4598 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list",
4598 4599 cycomni_walk_init, cycomni_walk_step, NULL },
4599 4600 { "cyctrace", "walk cyclic trace buffer",
4600 4601 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini },
4601 4602
4602 4603 /* from devinfo.c */
4603 4604 { "binding_hash", "walk all entries in binding hash table",
4604 4605 binding_hash_walk_init, binding_hash_walk_step, NULL },
4605 4606 { "devinfo", "walk devinfo tree or subtree",
4606 4607 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini },
4607 4608 { "devinfo_audit_log", "walk devinfo audit system-wide log",
4608 4609 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step,
4609 4610 devinfo_audit_log_walk_fini},
4610 4611 { "devinfo_audit_node", "walk per-devinfo audit history",
4611 4612 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step,
4612 4613 devinfo_audit_node_walk_fini},
4613 4614 { "devinfo_children", "walk children of devinfo node",
4614 4615 devinfo_children_walk_init, devinfo_children_walk_step,
4615 4616 devinfo_children_walk_fini },
4616 4617 { "devinfo_parents", "walk ancestors of devinfo node",
4617 4618 devinfo_parents_walk_init, devinfo_parents_walk_step,
4618 4619 devinfo_parents_walk_fini },
4619 4620 { "devinfo_siblings", "walk siblings of devinfo node",
4620 4621 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL },
4621 4622 { "devi_next", "walk devinfo list",
4622 4623 NULL, devi_next_walk_step, NULL },
4623 4624 { "devnames", "walk devnames array",
4624 4625 devnames_walk_init, devnames_walk_step, devnames_walk_fini },
4625 4626 { "minornode", "given a devinfo node, walk minor nodes",
4626 4627 minornode_walk_init, minornode_walk_step, NULL },
4627 4628 { "softstate",
4628 4629 "given an i_ddi_soft_state*, list all in-use driver stateps",
4629 4630 soft_state_walk_init, soft_state_walk_step,
4630 4631 NULL, NULL },
4631 4632 { "softstate_all",
4632 4633 "given an i_ddi_soft_state*, list all driver stateps",
4633 4634 soft_state_walk_init, soft_state_all_walk_step,
4634 4635 NULL, NULL },
4635 4636 { "devinfo_fmc",
4636 4637 "walk a fault management handle cache active list",
4637 4638 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL },
4638 4639
4639 4640 /* from group.c */
4640 4641 { "group", "walk all elements of a group",
4641 4642 group_walk_init, group_walk_step, NULL },
4642 4643
4643 4644 /* from irm.c */
4644 4645 { "irmpools", "walk global list of interrupt pools",
4645 4646 irmpools_walk_init, list_walk_step, list_walk_fini },
4646 4647 { "irmreqs", "walk list of interrupt requests in an interrupt pool",
4647 4648 irmreqs_walk_init, list_walk_step, list_walk_fini },
4648 4649
4649 4650 /* from kmem.c */
4650 4651 { "allocdby", "given a thread, walk its allocated bufctls",
4651 4652 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4652 4653 { "bufctl", "walk a kmem cache's bufctls",
4653 4654 bufctl_walk_init, kmem_walk_step, kmem_walk_fini },
4654 4655 { "bufctl_history", "walk the available history of a bufctl",
4655 4656 bufctl_history_walk_init, bufctl_history_walk_step,
4656 4657 bufctl_history_walk_fini },
4657 4658 { "freedby", "given a thread, walk its freed bufctls",
4658 4659 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4659 4660 { "freectl", "walk a kmem cache's free bufctls",
4660 4661 freectl_walk_init, kmem_walk_step, kmem_walk_fini },
4661 4662 { "freectl_constructed", "walk a kmem cache's constructed free bufctls",
4662 4663 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4663 4664 { "freemem", "walk a kmem cache's free memory",
4664 4665 freemem_walk_init, kmem_walk_step, kmem_walk_fini },
4665 4666 { "freemem_constructed", "walk a kmem cache's constructed free memory",
4666 4667 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4667 4668 { "kmem", "walk a kmem cache",
4668 4669 kmem_walk_init, kmem_walk_step, kmem_walk_fini },
4669 4670 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches",
4670 4671 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL },
4671 4672 { "kmem_hash", "given a kmem cache, walk its allocated hash table",
4672 4673 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini },
4673 4674 { "kmem_log", "walk the kmem transaction log",
4674 4675 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini },
4675 4676 { "kmem_slab", "given a kmem cache, walk its slabs",
4676 4677 kmem_slab_walk_init, combined_walk_step, combined_walk_fini },
4677 4678 { "kmem_slab_partial",
4678 4679 "given a kmem cache, walk its partially allocated slabs (min 1)",
4679 4680 kmem_slab_walk_partial_init, combined_walk_step,
4680 4681 combined_walk_fini },
4681 4682 { "vmem", "walk vmem structures in pre-fix, depth-first order",
4682 4683 vmem_walk_init, vmem_walk_step, vmem_walk_fini },
4683 4684 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs",
4684 4685 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4685 4686 { "vmem_free", "given a vmem_t, walk its free vmem_segs",
4686 4687 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4687 4688 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order",
4688 4689 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini },
4689 4690 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs",
4690 4691 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4691 4692 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs",
4692 4693 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4693 4694
4694 4695 /* from ldi.c */
4695 4696 { "ldi_handle", "walk the layered driver handle hash",
4696 4697 ldi_handle_walk_init, ldi_handle_walk_step, NULL },
4697 4698 { "ldi_ident", "walk the layered driver identifier hash",
4698 4699 ldi_ident_walk_init, ldi_ident_walk_step, NULL },
4699 4700
4700 4701 /* from leaky.c + leaky_subr.c */
4701 4702 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same "
4702 4703 "stack trace",
4703 4704 leaky_walk_init, leaky_walk_step, leaky_walk_fini },
4704 4705 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for "
4705 4706 "leaks w/ same stack trace",
4706 4707 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini },
4707 4708
4708 4709 /* from lgrp.c */
4709 4710 { "lgrp_cpulist", "walk CPUs in a given lgroup",
4710 4711 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL },
4711 4712 { "lgrptbl", "walk lgroup table",
4712 4713 lgrp_walk_init, lgrp_walk_step, NULL },
4713 4714 { "lgrp_parents", "walk up lgroup lineage from given lgroup",
4714 4715 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL },
4715 4716 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup",
4716 4717 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL },
4717 4718 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup",
4718 4719 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL },
4719 4720
4720 4721 /* from list.c */
4721 4722 { LIST_WALK_NAME, LIST_WALK_DESC,
4722 4723 list_walk_init, list_walk_step, list_walk_fini },
4723 4724
4724 4725 /* from mdi.c */
4725 4726 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link",
4726 4727 mdi_pi_client_link_walk_init,
4727 4728 mdi_pi_client_link_walk_step,
4728 4729 mdi_pi_client_link_walk_fini },
4729 4730 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link",
4730 4731 mdi_pi_phci_link_walk_init,
4731 4732 mdi_pi_phci_link_walk_step,
4732 4733 mdi_pi_phci_link_walk_fini },
4733 4734 { "mdiphci_list", "Walker for mdi_phci ph_next link",
4734 4735 mdi_phci_ph_next_walk_init,
4735 4736 mdi_phci_ph_next_walk_step,
4736 4737 mdi_phci_ph_next_walk_fini },
4737 4738
4738 4739 /* from memory.c */
4739 4740 { "allpages", "walk all pages, including free pages",
4740 4741 allpages_walk_init, allpages_walk_step, allpages_walk_fini },
4741 4742 { "anon", "given an amp, list allocated anon structures",
4742 4743 anon_walk_init, anon_walk_step, anon_walk_fini,
4743 4744 ANON_WALK_ALLOC },
4744 4745 { "anon_all", "given an amp, list contents of all anon slots",
4745 4746 anon_walk_init, anon_walk_step, anon_walk_fini,
4746 4747 ANON_WALK_ALL },
4747 4748 { "memlist", "walk specified memlist",
4748 4749 NULL, memlist_walk_step, NULL },
4749 4750 { "page", "walk all pages, or those from the specified vnode",
4750 4751 page_walk_init, page_walk_step, page_walk_fini },
4751 4752 { "seg", "given an as, list of segments",
4752 4753 seg_walk_init, avl_walk_step, avl_walk_fini },
4753 4754 { "segvn_anon",
4754 4755 "given a struct segvn_data, list allocated anon structures",
4755 4756 segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4756 4757 ANON_WALK_ALLOC },
4757 4758 { "segvn_anon_all",
4758 4759 "given a struct segvn_data, list contents of all anon slots",
4759 4760 segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4760 4761 ANON_WALK_ALL },
4761 4762 { "segvn_pages",
4762 4763 "given a struct segvn_data, list resident pages in "
4763 4764 "offset order",
4764 4765 segvn_pages_walk_init, segvn_pages_walk_step,
4765 4766 segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT },
4766 4767 { "segvn_pages_all",
4767 4768 "for each offset in a struct segvn_data, give page_t pointer "
4768 4769 "(if resident), or NULL.",
4769 4770 segvn_pages_walk_init, segvn_pages_walk_step,
4770 4771 segvn_pages_walk_fini, SEGVN_PAGES_ALL },
4771 4772 { "swapinfo", "walk swapinfo structures",
4772 4773 swap_walk_init, swap_walk_step, NULL },
4773 4774
4774 4775 /* from mmd.c */
4775 4776 { "pattr", "walk pattr_t structures", pattr_walk_init,
4776 4777 mmdq_walk_step, mmdq_walk_fini },
4777 4778 { "pdesc", "walk pdesc_t structures",
4778 4779 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini },
4779 4780 { "pdesc_slab", "walk pdesc_slab_t structures",
4780 4781 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini },
4781 4782
4782 4783 /* from modhash.c */
4783 4784 { "modhash", "walk list of mod_hash structures", modhash_walk_init,
4784 4785 modhash_walk_step, NULL },
4785 4786 { "modent", "walk list of entries in a given mod_hash",
4786 4787 modent_walk_init, modent_walk_step, modent_walk_fini },
4787 4788 { "modchain", "walk list of entries in a given mod_hash_entry",
4788 4789 NULL, modchain_walk_step, NULL },
4789 4790
4790 4791 /* from net.c */
4791 4792 { "icmp", "walk ICMP control structures using MI for all stacks",
4792 4793 mi_payload_walk_init, mi_payload_walk_step, NULL,
4793 4794 &mi_icmp_arg },
4794 4795 { "mi", "given a MI_O, walk the MI",
4795 4796 mi_walk_init, mi_walk_step, mi_walk_fini, NULL },
4796 4797 { "sonode", "given a sonode, walk its children",
4797 4798 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL },
4798 4799 { "icmp_stacks", "walk all the icmp_stack_t",
4799 4800 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL },
4800 4801 { "tcp_stacks", "walk all the tcp_stack_t",
4801 4802 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL },
4802 4803 { "udp_stacks", "walk all the udp_stack_t",
4803 4804 udp_stacks_walk_init, udp_stacks_walk_step, NULL },
4804 4805
4805 4806 /* from netstack.c */
4806 4807 { "netstack", "walk a list of kernel netstacks",
4807 4808 netstack_walk_init, netstack_walk_step, NULL },
4808 4809
4809 4810 /* from nvpair.c */
4810 4811 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR,
4811 4812 nvpair_walk_init, nvpair_walk_step, NULL },
4812 4813
4813 4814 /* from pci.c */
4814 4815 { "pcie_bus", "walk all pcie_bus_t's", pcie_bus_walk_init,
4815 4816 pcie_bus_walk_step, NULL },
4816 4817
4817 4818 /* from rctl.c */
4818 4819 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists",
4819 4820 rctl_dict_walk_init, rctl_dict_walk_step, NULL },
4820 4821 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init,
4821 4822 rctl_set_walk_step, NULL },
4822 4823 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated",
4823 4824 rctl_val_walk_init, rctl_val_walk_step },
4824 4825
4825 4826 /* from sobj.c */
4826 4827 { "blocked", "walk threads blocked on a given sobj",
4827 4828 blocked_walk_init, blocked_walk_step, NULL },
4828 4829 { "wchan", "given a wchan, list of blocked threads",
4829 4830 wchan_walk_init, wchan_walk_step, wchan_walk_fini },
4830 4831
4831 4832 /* from stream.c */
4832 4833 { "b_cont", "walk mblk_t list using b_cont",
4833 4834 mblk_walk_init, b_cont_step, mblk_walk_fini },
4834 4835 { "b_next", "walk mblk_t list using b_next",
4835 4836 mblk_walk_init, b_next_step, mblk_walk_fini },
4836 4837 { "qlink", "walk queue_t list using q_link",
4837 4838 queue_walk_init, queue_link_step, queue_walk_fini },
4838 4839 { "qnext", "walk queue_t list using q_next",
4839 4840 queue_walk_init, queue_next_step, queue_walk_fini },
4840 4841 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list",
4841 4842 strftblk_walk_init, strftblk_step, strftblk_walk_fini },
4842 4843 { "readq", "walk read queue side of stdata",
4843 4844 str_walk_init, strr_walk_step, str_walk_fini },
4844 4845 { "writeq", "walk write queue side of stdata",
4845 4846 str_walk_init, strw_walk_step, str_walk_fini },
4846 4847
4847 4848 /* from taskq.c */
4848 4849 { "taskq_thread", "given a taskq_t, list all of its threads",
4849 4850 taskq_thread_walk_init,
4850 4851 taskq_thread_walk_step,
4851 4852 taskq_thread_walk_fini },
4852 4853 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list",
4853 4854 taskq_ent_walk_init, taskq_ent_walk_step, NULL },
4854 4855
4855 4856 /* from thread.c */
4856 4857 { "deathrow", "walk threads on both lwp_ and thread_deathrow",
4857 4858 deathrow_walk_init, deathrow_walk_step, NULL },
4858 4859 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues",
4859 4860 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4860 4861 { "cpupart_dispq",
4861 4862 "given a cpupart_t, walk threads in dispatcher queues",
4862 4863 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4863 4864 { "lwp_deathrow", "walk lwp_deathrow",
4864 4865 lwp_deathrow_walk_init, deathrow_walk_step, NULL },
4865 4866 { "thread", "global or per-process kthread_t structures",
4866 4867 thread_walk_init, thread_walk_step, thread_walk_fini },
4867 4868 { "thread_deathrow", "walk threads on thread_deathrow",
4868 4869 thread_deathrow_walk_init, deathrow_walk_step, NULL },
4869 4870
4870 4871 /* from tsd.c */
4871 4872 { "tsd", "walk list of thread-specific data",
4872 4873 tsd_walk_init, tsd_walk_step, tsd_walk_fini },
4873 4874
4874 4875 /* from tsol.c */
4875 4876 { "tnrh", "walk remote host cache structures",
4876 4877 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini },
4877 4878 { "tnrhtp", "walk remote host template structures",
4878 4879 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini },
4879 4880
4880 4881 /*
4881 4882 * typegraph does not work under kmdb, as it requires too much memory
4882 4883 * for its internal data structures.
4883 4884 */
4884 4885 #ifndef _KMDB
4885 4886 /* from typegraph.c */
4886 4887 { "typeconflict", "walk buffers with conflicting type inferences",
4887 4888 typegraph_walk_init, typeconflict_walk_step },
4888 4889 { "typeunknown", "walk buffers with unknown types",
4889 4890 typegraph_walk_init, typeunknown_walk_step },
4890 4891 #endif
4891 4892
4892 4893 /* from vfs.c */
4893 4894 { "vfs", "walk file system list",
4894 4895 vfs_walk_init, vfs_walk_step },
4895 4896
4896 4897 /* from zone.c */
4897 4898 { "zone", "walk a list of kernel zones",
4898 4899 zone_walk_init, zone_walk_step, NULL },
4899 4900 { "zsd", "walk list of zsd entries for a zone",
4900 4901 zsd_walk_init, zsd_walk_step, NULL },
4901 4902
4902 4903 { NULL }
4903 4904 };
4904 4905
4905 4906 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers };
4906 4907
4907 4908 /*ARGSUSED*/
4908 4909 static void
4909 4910 genunix_statechange_cb(void *ignored)
4910 4911 {
4911 4912 /*
4912 4913 * Force ::findleaks and ::stacks to let go any cached state.
4913 4914 */
4914 4915 leaky_cleanup(1);
4915 4916 stacks_cleanup(1);
4916 4917
4917 4918 kmem_statechange(); /* notify kmem */
4918 4919 }
4919 4920
4920 4921 const mdb_modinfo_t *
4921 4922 _mdb_init(void)
4922 4923 {
4923 4924 kmem_init();
4924 4925
4925 4926 (void) mdb_callback_add(MDB_CALLBACK_STCHG,
4926 4927 genunix_statechange_cb, NULL);
4927 4928
4928 4929 #ifndef _KMDB
4929 4930 gcore_init();
4930 4931 #endif
4931 4932
4932 4933 return (&modinfo);
4933 4934 }
4934 4935
4935 4936 void
4936 4937 _mdb_fini(void)
4937 4938 {
4938 4939 leaky_cleanup(1);
4939 4940 stacks_cleanup(1);
4940 4941 }
|
↓ open down ↓ |
633 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX