1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright 2020 Joyent, Inc.
  25  * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
  26  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
  27  */
  28 
  29 /*      Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
  30 /*        All Rights Reserved   */
  31 
  32 /*
  33  * University Copyright- Copyright (c) 1982, 1986, 1988
  34  * The Regents of the University of California
  35  * All Rights Reserved
  36  *
  37  * University Acknowledgment- Portions of this document are derived from
  38  * software developed by the University of California, Berkeley, and its
  39  * contributors.
  40  */
  41 
  42 #include <sys/types.h>
  43 #include <sys/param.h>
  44 #include <sys/t_lock.h>
  45 #include <sys/errno.h>
  46 #include <sys/cred.h>
  47 #include <sys/user.h>
  48 #include <sys/uio.h>
  49 #include <sys/file.h>
  50 #include <sys/pathname.h>
  51 #include <sys/vfs.h>
  52 #include <sys/vfs_opreg.h>
  53 #include <sys/vnode.h>
  54 #include <sys/filio.h>
  55 #include <sys/rwstlock.h>
  56 #include <sys/fem.h>
  57 #include <sys/stat.h>
  58 #include <sys/mode.h>
  59 #include <sys/conf.h>
  60 #include <sys/sysmacros.h>
  61 #include <sys/cmn_err.h>
  62 #include <sys/systm.h>
  63 #include <sys/kmem.h>
  64 #include <sys/debug.h>
  65 #include <c2/audit.h>
  66 #include <sys/acl.h>
  67 #include <sys/nbmlock.h>
  68 #include <sys/fcntl.h>
  69 #include <fs/fs_subr.h>
  70 #include <sys/taskq.h>
  71 #include <fs/fs_reparse.h>
  72 #include <sys/time.h>
  73 #include <sys/sdt.h>
  74 
  75 /* Determine if this vnode is a file that is read-only */
  76 #define ISROFILE(vp)    \
  77         ((vp)->v_type != VCHR && (vp)->v_type != VBLK && \
  78             (vp)->v_type != VFIFO && vn_is_readonly(vp))
  79 
  80 /* Tunable via /etc/system; used only by admin/install */
  81 int nfs_global_client_only;
  82 
  83 /*
  84  * Array of vopstats_t for per-FS-type vopstats.  This array has the same
  85  * number of entries as and parallel to the vfssw table.  (Arguably, it could
  86  * be part of the vfssw table.)  Once it's initialized, it's accessed using
  87  * the same fstype index that is used to index into the vfssw table.
  88  */
  89 vopstats_t **vopstats_fstype;
  90 
  91 /* vopstats initialization template used for fast initialization via bcopy() */
  92 static vopstats_t *vs_templatep;
  93 
  94 /* Kmem cache handle for vsk_anchor_t allocations */
  95 kmem_cache_t *vsk_anchor_cache;
  96 
  97 /* file events cleanup routine */
  98 extern void free_fopdata(vnode_t *);
  99 
 100 /*
 101  * Root of AVL tree for the kstats associated with vopstats.  Lock protects
 102  * updates to vsktat_tree.
 103  */
 104 avl_tree_t      vskstat_tree;
 105 kmutex_t        vskstat_tree_lock;
 106 
 107 /* Global variable which enables/disables the vopstats collection */
 108 int vopstats_enabled = 1;
 109 
 110 /* Global used for empty/invalid v_path */
 111 char *vn_vpath_empty = "";
 112 
 113 /*
 114  * forward declarations for internal vnode specific data (vsd)
 115  */
 116 static void *vsd_realloc(void *, size_t, size_t);
 117 
 118 /*
 119  * forward declarations for reparse point functions
 120  */
 121 static int fs_reparse_mark(char *target, vattr_t *vap, xvattr_t *xvattr);
 122 
 123 /*
 124  * VSD -- VNODE SPECIFIC DATA
 125  * The v_data pointer is typically used by a file system to store a
 126  * pointer to the file system's private node (e.g. ufs inode, nfs rnode).
 127  * However, there are times when additional project private data needs
 128  * to be stored separately from the data (node) pointed to by v_data.
 129  * This additional data could be stored by the file system itself or
 130  * by a completely different kernel entity.  VSD provides a way for
 131  * callers to obtain a key and store a pointer to private data associated
 132  * with a vnode.
 133  *
 134  * Callers are responsible for protecting the vsd by holding v_vsd_lock
 135  * for calls to vsd_set() and vsd_get().
 136  */
 137 
 138 /*
 139  * vsd_lock protects:
 140  *   vsd_nkeys - creation and deletion of vsd keys
 141  *   vsd_list - insertion and deletion of vsd_node in the vsd_list
 142  *   vsd_destructor - adding and removing destructors to the list
 143  */
 144 static kmutex_t         vsd_lock;
 145 static uint_t           vsd_nkeys;       /* size of destructor array */
 146 /* list of vsd_node's */
 147 static list_t *vsd_list = NULL;
 148 /* per-key destructor funcs */
 149 static void             (**vsd_destructor)(void *);
 150 
 151 /*
 152  * The following is the common set of actions needed to update the
 153  * vopstats structure from a vnode op.  Both VOPSTATS_UPDATE() and
 154  * VOPSTATS_UPDATE_IO() do almost the same thing, except for the
 155  * recording of the bytes transferred.  Since the code is similar
 156  * but small, it is nearly a duplicate.  Consequently any changes
 157  * to one may need to be reflected in the other.
 158  * Rundown of the variables:
 159  * vp - Pointer to the vnode
 160  * counter - Partial name structure member to update in vopstats for counts
 161  * bytecounter - Partial name structure member to update in vopstats for bytes
 162  * bytesval - Value to update in vopstats for bytes
 163  * fstype - Index into vsanchor_fstype[], same as index into vfssw[]
 164  * vsp - Pointer to vopstats structure (either in vfs or vsanchor_fstype[i])
 165  */
 166 
 167 #define VOPSTATS_UPDATE(vp, counter) {                                  \
 168         vfs_t *vfsp = (vp)->v_vfsp;                                  \
 169         if (vfsp && vfsp->vfs_implp &&                                       \
 170             (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) {   \
 171                 vopstats_t *vsp = &vfsp->vfs_vopstats;                   \
 172                 uint64_t *stataddr = &(vsp->n##counter.value.ui64);      \
 173                 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \
 174                     size_t, uint64_t *);                                \
 175                 __dtrace_probe___fsinfo_##counter(vp, 0, stataddr);     \
 176                 (*stataddr)++;                                          \
 177                 if ((vsp = vfsp->vfs_fstypevsp) != NULL) {           \
 178                         vsp->n##counter.value.ui64++;                        \
 179                 }                                                       \
 180         }                                                               \
 181 }
 182 
 183 #define VOPSTATS_UPDATE_IO(vp, counter, bytecounter, bytesval) {        \
 184         vfs_t *vfsp = (vp)->v_vfsp;                                  \
 185         if (vfsp && vfsp->vfs_implp &&                                       \
 186             (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) {   \
 187                 vopstats_t *vsp = &vfsp->vfs_vopstats;                   \
 188                 uint64_t *stataddr = &(vsp->n##counter.value.ui64);      \
 189                 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \
 190                     size_t, uint64_t *);                                \
 191                 __dtrace_probe___fsinfo_##counter(vp, bytesval, stataddr); \
 192                 (*stataddr)++;                                          \
 193                 vsp->bytecounter.value.ui64 += bytesval;             \
 194                 if ((vsp = vfsp->vfs_fstypevsp) != NULL) {           \
 195                         vsp->n##counter.value.ui64++;                        \
 196                         vsp->bytecounter.value.ui64 += bytesval;     \
 197                 }                                                       \
 198         }                                                               \
 199 }
 200 
 201 /*
 202  * If the filesystem does not support XIDs map credential
 203  * If the vfsp is NULL, perhaps we should also map?
 204  */
 205 #define VOPXID_MAP_CR(vp, cr)   {                                       \
 206         vfs_t *vfsp = (vp)->v_vfsp;                                  \
 207         if (vfsp != NULL && (vfsp->vfs_flag & VFS_XID) == 0)             \
 208                 cr = crgetmapped(cr);                                   \
 209         }
 210 
 211 /*
 212  * Convert stat(2) formats to vnode types and vice versa.  (Knows about
 213  * numerical order of S_IFMT and vnode types.)
 214  */
 215 enum vtype iftovt_tab[] = {
 216         VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
 217         VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
 218 };
 219 
 220 ushort_t vttoif_tab[] = {
 221         0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFIFO,
 222         S_IFDOOR, 0, S_IFSOCK, S_IFPORT, 0
 223 };
 224 
 225 /*
 226  * The system vnode cache.
 227  */
 228 
 229 kmem_cache_t *vn_cache;
 230 
 231 
 232 /*
 233  * Vnode operations vector.
 234  */
 235 
 236 static const fs_operation_trans_def_t vn_ops_table[] = {
 237         VOPNAME_OPEN, offsetof(struct vnodeops, vop_open),
 238             fs_nosys, fs_nosys,
 239 
 240         VOPNAME_CLOSE, offsetof(struct vnodeops, vop_close),
 241             fs_nosys, fs_nosys,
 242 
 243         VOPNAME_READ, offsetof(struct vnodeops, vop_read),
 244             fs_nosys, fs_nosys,
 245 
 246         VOPNAME_WRITE, offsetof(struct vnodeops, vop_write),
 247             fs_nosys, fs_nosys,
 248 
 249         VOPNAME_IOCTL, offsetof(struct vnodeops, vop_ioctl),
 250             fs_nosys, fs_nosys,
 251 
 252         VOPNAME_SETFL, offsetof(struct vnodeops, vop_setfl),
 253             fs_setfl, fs_nosys,
 254 
 255         VOPNAME_GETATTR, offsetof(struct vnodeops, vop_getattr),
 256             fs_nosys, fs_nosys,
 257 
 258         VOPNAME_SETATTR, offsetof(struct vnodeops, vop_setattr),
 259             fs_nosys, fs_nosys,
 260 
 261         VOPNAME_ACCESS, offsetof(struct vnodeops, vop_access),
 262             fs_nosys, fs_nosys,
 263 
 264         VOPNAME_LOOKUP, offsetof(struct vnodeops, vop_lookup),
 265             fs_nosys, fs_nosys,
 266 
 267         VOPNAME_CREATE, offsetof(struct vnodeops, vop_create),
 268             fs_nosys, fs_nosys,
 269 
 270         VOPNAME_REMOVE, offsetof(struct vnodeops, vop_remove),
 271             fs_nosys, fs_nosys,
 272 
 273         VOPNAME_LINK, offsetof(struct vnodeops, vop_link),
 274             fs_nosys, fs_nosys,
 275 
 276         VOPNAME_RENAME, offsetof(struct vnodeops, vop_rename),
 277             fs_nosys, fs_nosys,
 278 
 279         VOPNAME_MKDIR, offsetof(struct vnodeops, vop_mkdir),
 280             fs_nosys, fs_nosys,
 281 
 282         VOPNAME_RMDIR, offsetof(struct vnodeops, vop_rmdir),
 283             fs_nosys, fs_nosys,
 284 
 285         VOPNAME_READDIR, offsetof(struct vnodeops, vop_readdir),
 286             fs_nosys, fs_nosys,
 287 
 288         VOPNAME_SYMLINK, offsetof(struct vnodeops, vop_symlink),
 289             fs_nosys, fs_nosys,
 290 
 291         VOPNAME_READLINK, offsetof(struct vnodeops, vop_readlink),
 292             fs_nosys, fs_nosys,
 293 
 294         VOPNAME_FSYNC, offsetof(struct vnodeops, vop_fsync),
 295             fs_nosys, fs_nosys,
 296 
 297         VOPNAME_INACTIVE, offsetof(struct vnodeops, vop_inactive),
 298             fs_nosys, fs_nosys,
 299 
 300         VOPNAME_FID, offsetof(struct vnodeops, vop_fid),
 301             fs_nosys, fs_nosys,
 302 
 303         VOPNAME_RWLOCK, offsetof(struct vnodeops, vop_rwlock),
 304             fs_rwlock, fs_rwlock,
 305 
 306         VOPNAME_RWUNLOCK, offsetof(struct vnodeops, vop_rwunlock),
 307             (fs_generic_func_p)(uintptr_t)fs_rwunlock,
 308             (fs_generic_func_p)(uintptr_t)fs_rwunlock,  /* no errors allowed */
 309 
 310         VOPNAME_SEEK, offsetof(struct vnodeops, vop_seek),
 311             fs_nosys, fs_nosys,
 312 
 313         VOPNAME_CMP, offsetof(struct vnodeops, vop_cmp),
 314             fs_cmp, fs_cmp,             /* no errors allowed */
 315 
 316         VOPNAME_FRLOCK, offsetof(struct vnodeops, vop_frlock),
 317             fs_frlock, fs_nosys,
 318 
 319         VOPNAME_SPACE, offsetof(struct vnodeops, vop_space),
 320             fs_nosys, fs_nosys,
 321 
 322         VOPNAME_REALVP, offsetof(struct vnodeops, vop_realvp),
 323             fs_nosys, fs_nosys,
 324 
 325         VOPNAME_GETPAGE, offsetof(struct vnodeops, vop_getpage),
 326             fs_nosys, fs_nosys,
 327 
 328         VOPNAME_PUTPAGE, offsetof(struct vnodeops, vop_putpage),
 329             fs_nosys, fs_nosys,
 330 
 331         VOPNAME_MAP, offsetof(struct vnodeops, vop_map),
 332             (fs_generic_func_p) fs_nosys_map,
 333             (fs_generic_func_p) fs_nosys_map,
 334 
 335         VOPNAME_ADDMAP, offsetof(struct vnodeops, vop_addmap),
 336             (fs_generic_func_p) fs_nosys_addmap,
 337             (fs_generic_func_p) fs_nosys_addmap,
 338 
 339         VOPNAME_DELMAP, offsetof(struct vnodeops, vop_delmap),
 340             fs_nosys, fs_nosys,
 341 
 342         VOPNAME_POLL, offsetof(struct vnodeops, vop_poll),
 343             (fs_generic_func_p) fs_poll, (fs_generic_func_p) fs_nosys_poll,
 344 
 345         VOPNAME_DUMP, offsetof(struct vnodeops, vop_dump),
 346             fs_nosys, fs_nosys,
 347 
 348         VOPNAME_PATHCONF, offsetof(struct vnodeops, vop_pathconf),
 349             fs_pathconf, fs_nosys,
 350 
 351         VOPNAME_PAGEIO, offsetof(struct vnodeops, vop_pageio),
 352             fs_nosys, fs_nosys,
 353 
 354         VOPNAME_DUMPCTL, offsetof(struct vnodeops, vop_dumpctl),
 355             fs_nosys, fs_nosys,
 356 
 357         VOPNAME_DISPOSE, offsetof(struct vnodeops, vop_dispose),
 358             (fs_generic_func_p)(uintptr_t)fs_dispose,
 359             (fs_generic_func_p)(uintptr_t)fs_nodispose,
 360 
 361         VOPNAME_SETSECATTR, offsetof(struct vnodeops, vop_setsecattr),
 362             fs_nosys, fs_nosys,
 363 
 364         VOPNAME_GETSECATTR, offsetof(struct vnodeops, vop_getsecattr),
 365             fs_fab_acl, fs_nosys,
 366 
 367         VOPNAME_SHRLOCK, offsetof(struct vnodeops, vop_shrlock),
 368             fs_shrlock, fs_nosys,
 369 
 370         VOPNAME_VNEVENT, offsetof(struct vnodeops, vop_vnevent),
 371             (fs_generic_func_p) fs_vnevent_nosupport,
 372             (fs_generic_func_p) fs_vnevent_nosupport,
 373 
 374         VOPNAME_REQZCBUF, offsetof(struct vnodeops, vop_reqzcbuf),
 375             fs_nosys, fs_nosys,
 376 
 377         VOPNAME_RETZCBUF, offsetof(struct vnodeops, vop_retzcbuf),
 378             fs_nosys, fs_nosys,
 379 
 380         NULL, 0, NULL, NULL
 381 };
 382 
 383 /* Extensible attribute (xva) routines. */
 384 
 385 /*
 386  * Zero out the structure, set the size of the requested/returned bitmaps,
 387  * set AT_XVATTR in the embedded vattr_t's va_mask, and set up the pointer
 388  * to the returned attributes array.
 389  */
 390 void
 391 xva_init(xvattr_t *xvap)
 392 {
 393         bzero(xvap, sizeof (xvattr_t));
 394         xvap->xva_mapsize = XVA_MAPSIZE;
 395         xvap->xva_magic = XVA_MAGIC;
 396         xvap->xva_vattr.va_mask = AT_XVATTR;
 397         xvap->xva_rtnattrmapp = &(xvap->xva_rtnattrmap)[0];
 398 }
 399 
 400 /*
 401  * If AT_XVATTR is set, returns a pointer to the embedded xoptattr_t
 402  * structure.  Otherwise, returns NULL.
 403  */
 404 xoptattr_t *
 405 xva_getxoptattr(xvattr_t *xvap)
 406 {
 407         xoptattr_t *xoap = NULL;
 408         if (xvap->xva_vattr.va_mask & AT_XVATTR)
 409                 xoap = &xvap->xva_xoptattrs;
 410         return (xoap);
 411 }
 412 
 413 /*
 414  * Used by the AVL routines to compare two vsk_anchor_t structures in the tree.
 415  * We use the f_fsid reported by VFS_STATVFS() since we use that for the
 416  * kstat name.
 417  */
 418 static int
 419 vska_compar(const void *n1, const void *n2)
 420 {
 421         int ret;
 422         ulong_t p1 = ((vsk_anchor_t *)n1)->vsk_fsid;
 423         ulong_t p2 = ((vsk_anchor_t *)n2)->vsk_fsid;
 424 
 425         if (p1 < p2) {
 426                 ret = -1;
 427         } else if (p1 > p2) {
 428                 ret = 1;
 429         } else {
 430                 ret = 0;
 431         }
 432 
 433         return (ret);
 434 }
 435 
 436 /*
 437  * Used to create a single template which will be bcopy()ed to a newly
 438  * allocated vsanchor_combo_t structure in new_vsanchor(), below.
 439  */
 440 static vopstats_t *
 441 create_vopstats_template()
 442 {
 443         vopstats_t              *vsp;
 444 
 445         vsp = kmem_alloc(sizeof (vopstats_t), KM_SLEEP);
 446         bzero(vsp, sizeof (*vsp));      /* Start fresh */
 447 
 448         /* VOP_OPEN */
 449         kstat_named_init(&vsp->nopen, "nopen", KSTAT_DATA_UINT64);
 450         /* VOP_CLOSE */
 451         kstat_named_init(&vsp->nclose, "nclose", KSTAT_DATA_UINT64);
 452         /* VOP_READ I/O */
 453         kstat_named_init(&vsp->nread, "nread", KSTAT_DATA_UINT64);
 454         kstat_named_init(&vsp->read_bytes, "read_bytes", KSTAT_DATA_UINT64);
 455         /* VOP_WRITE I/O */
 456         kstat_named_init(&vsp->nwrite, "nwrite", KSTAT_DATA_UINT64);
 457         kstat_named_init(&vsp->write_bytes, "write_bytes", KSTAT_DATA_UINT64);
 458         /* VOP_IOCTL */
 459         kstat_named_init(&vsp->nioctl, "nioctl", KSTAT_DATA_UINT64);
 460         /* VOP_SETFL */
 461         kstat_named_init(&vsp->nsetfl, "nsetfl", KSTAT_DATA_UINT64);
 462         /* VOP_GETATTR */
 463         kstat_named_init(&vsp->ngetattr, "ngetattr", KSTAT_DATA_UINT64);
 464         /* VOP_SETATTR */
 465         kstat_named_init(&vsp->nsetattr, "nsetattr", KSTAT_DATA_UINT64);
 466         /* VOP_ACCESS */
 467         kstat_named_init(&vsp->naccess, "naccess", KSTAT_DATA_UINT64);
 468         /* VOP_LOOKUP */
 469         kstat_named_init(&vsp->nlookup, "nlookup", KSTAT_DATA_UINT64);
 470         /* VOP_CREATE */
 471         kstat_named_init(&vsp->ncreate, "ncreate", KSTAT_DATA_UINT64);
 472         /* VOP_REMOVE */
 473         kstat_named_init(&vsp->nremove, "nremove", KSTAT_DATA_UINT64);
 474         /* VOP_LINK */
 475         kstat_named_init(&vsp->nlink, "nlink", KSTAT_DATA_UINT64);
 476         /* VOP_RENAME */
 477         kstat_named_init(&vsp->nrename, "nrename", KSTAT_DATA_UINT64);
 478         /* VOP_MKDIR */
 479         kstat_named_init(&vsp->nmkdir, "nmkdir", KSTAT_DATA_UINT64);
 480         /* VOP_RMDIR */
 481         kstat_named_init(&vsp->nrmdir, "nrmdir", KSTAT_DATA_UINT64);
 482         /* VOP_READDIR I/O */
 483         kstat_named_init(&vsp->nreaddir, "nreaddir", KSTAT_DATA_UINT64);
 484         kstat_named_init(&vsp->readdir_bytes, "readdir_bytes",
 485             KSTAT_DATA_UINT64);
 486         /* VOP_SYMLINK */
 487         kstat_named_init(&vsp->nsymlink, "nsymlink", KSTAT_DATA_UINT64);
 488         /* VOP_READLINK */
 489         kstat_named_init(&vsp->nreadlink, "nreadlink", KSTAT_DATA_UINT64);
 490         /* VOP_FSYNC */
 491         kstat_named_init(&vsp->nfsync, "nfsync", KSTAT_DATA_UINT64);
 492         /* VOP_INACTIVE */
 493         kstat_named_init(&vsp->ninactive, "ninactive", KSTAT_DATA_UINT64);
 494         /* VOP_FID */
 495         kstat_named_init(&vsp->nfid, "nfid", KSTAT_DATA_UINT64);
 496         /* VOP_RWLOCK */
 497         kstat_named_init(&vsp->nrwlock, "nrwlock", KSTAT_DATA_UINT64);
 498         /* VOP_RWUNLOCK */
 499         kstat_named_init(&vsp->nrwunlock, "nrwunlock", KSTAT_DATA_UINT64);
 500         /* VOP_SEEK */
 501         kstat_named_init(&vsp->nseek, "nseek", KSTAT_DATA_UINT64);
 502         /* VOP_CMP */
 503         kstat_named_init(&vsp->ncmp, "ncmp", KSTAT_DATA_UINT64);
 504         /* VOP_FRLOCK */
 505         kstat_named_init(&vsp->nfrlock, "nfrlock", KSTAT_DATA_UINT64);
 506         /* VOP_SPACE */
 507         kstat_named_init(&vsp->nspace, "nspace", KSTAT_DATA_UINT64);
 508         /* VOP_REALVP */
 509         kstat_named_init(&vsp->nrealvp, "nrealvp", KSTAT_DATA_UINT64);
 510         /* VOP_GETPAGE */
 511         kstat_named_init(&vsp->ngetpage, "ngetpage", KSTAT_DATA_UINT64);
 512         /* VOP_PUTPAGE */
 513         kstat_named_init(&vsp->nputpage, "nputpage", KSTAT_DATA_UINT64);
 514         /* VOP_MAP */
 515         kstat_named_init(&vsp->nmap, "nmap", KSTAT_DATA_UINT64);
 516         /* VOP_ADDMAP */
 517         kstat_named_init(&vsp->naddmap, "naddmap", KSTAT_DATA_UINT64);
 518         /* VOP_DELMAP */
 519         kstat_named_init(&vsp->ndelmap, "ndelmap", KSTAT_DATA_UINT64);
 520         /* VOP_POLL */
 521         kstat_named_init(&vsp->npoll, "npoll", KSTAT_DATA_UINT64);
 522         /* VOP_DUMP */
 523         kstat_named_init(&vsp->ndump, "ndump", KSTAT_DATA_UINT64);
 524         /* VOP_PATHCONF */
 525         kstat_named_init(&vsp->npathconf, "npathconf", KSTAT_DATA_UINT64);
 526         /* VOP_PAGEIO */
 527         kstat_named_init(&vsp->npageio, "npageio", KSTAT_DATA_UINT64);
 528         /* VOP_DUMPCTL */
 529         kstat_named_init(&vsp->ndumpctl, "ndumpctl", KSTAT_DATA_UINT64);
 530         /* VOP_DISPOSE */
 531         kstat_named_init(&vsp->ndispose, "ndispose", KSTAT_DATA_UINT64);
 532         /* VOP_SETSECATTR */
 533         kstat_named_init(&vsp->nsetsecattr, "nsetsecattr", KSTAT_DATA_UINT64);
 534         /* VOP_GETSECATTR */
 535         kstat_named_init(&vsp->ngetsecattr, "ngetsecattr", KSTAT_DATA_UINT64);
 536         /* VOP_SHRLOCK */
 537         kstat_named_init(&vsp->nshrlock, "nshrlock", KSTAT_DATA_UINT64);
 538         /* VOP_VNEVENT */
 539         kstat_named_init(&vsp->nvnevent, "nvnevent", KSTAT_DATA_UINT64);
 540         /* VOP_REQZCBUF */
 541         kstat_named_init(&vsp->nreqzcbuf, "nreqzcbuf", KSTAT_DATA_UINT64);
 542         /* VOP_RETZCBUF */
 543         kstat_named_init(&vsp->nretzcbuf, "nretzcbuf", KSTAT_DATA_UINT64);
 544 
 545         return (vsp);
 546 }
 547 
 548 /*
 549  * Creates a kstat structure associated with a vopstats structure.
 550  */
 551 kstat_t *
 552 new_vskstat(char *ksname, vopstats_t *vsp)
 553 {
 554         kstat_t         *ksp;
 555 
 556         if (!vopstats_enabled) {
 557                 return (NULL);
 558         }
 559 
 560         ksp = kstat_create("unix", 0, ksname, "misc", KSTAT_TYPE_NAMED,
 561             sizeof (vopstats_t)/sizeof (kstat_named_t),
 562             KSTAT_FLAG_VIRTUAL|KSTAT_FLAG_WRITABLE);
 563         if (ksp) {
 564                 ksp->ks_data = vsp;
 565                 kstat_install(ksp);
 566         }
 567 
 568         return (ksp);
 569 }
 570 
 571 /*
 572  * Called from vfsinit() to initialize the support mechanisms for vopstats
 573  */
 574 void
 575 vopstats_startup()
 576 {
 577         if (!vopstats_enabled)
 578                 return;
 579 
 580         /*
 581          * Creates the AVL tree which holds per-vfs vopstat anchors.  This
 582          * is necessary since we need to check if a kstat exists before we
 583          * attempt to create it.  Also, initialize its lock.
 584          */
 585         avl_create(&vskstat_tree, vska_compar, sizeof (vsk_anchor_t),
 586             offsetof(vsk_anchor_t, vsk_node));
 587         mutex_init(&vskstat_tree_lock, NULL, MUTEX_DEFAULT, NULL);
 588 
 589         vsk_anchor_cache = kmem_cache_create("vsk_anchor_cache",
 590             sizeof (vsk_anchor_t), sizeof (uintptr_t), NULL, NULL, NULL,
 591             NULL, NULL, 0);
 592 
 593         /*
 594          * Set up the array of pointers for the vopstats-by-FS-type.
 595          * The entries will be allocated/initialized as each file system
 596          * goes through modload/mod_installfs.
 597          */
 598         vopstats_fstype = (vopstats_t **)kmem_zalloc(
 599             (sizeof (vopstats_t *) * nfstype), KM_SLEEP);
 600 
 601         /* Set up the global vopstats initialization template */
 602         vs_templatep = create_vopstats_template();
 603 }
 604 
 605 /*
 606  * We need to have the all of the counters zeroed.
 607  * The initialization of the vopstats_t includes on the order of
 608  * 50 calls to kstat_named_init().  Rather that do that on every call,
 609  * we do it once in a template (vs_templatep) then bcopy it over.
 610  */
 611 void
 612 initialize_vopstats(vopstats_t *vsp)
 613 {
 614         if (vsp == NULL)
 615                 return;
 616 
 617         bcopy(vs_templatep, vsp, sizeof (vopstats_t));
 618 }
 619 
 620 /*
 621  * If possible, determine which vopstats by fstype to use and
 622  * return a pointer to the caller.
 623  */
 624 vopstats_t *
 625 get_fstype_vopstats(vfs_t *vfsp, struct vfssw *vswp)
 626 {
 627         int             fstype = 0;     /* Index into vfssw[] */
 628         vopstats_t      *vsp = NULL;
 629 
 630         if (vfsp == NULL || (vfsp->vfs_flag & VFS_STATS) == 0 ||
 631             !vopstats_enabled)
 632                 return (NULL);
 633         /*
 634          * Set up the fstype.  We go to so much trouble because all versions
 635          * of NFS use the same fstype in their vfs even though they have
 636          * distinct entries in the vfssw[] table.
 637          * NOTE: A special vfs (e.g., EIO_vfs) may not have an entry.
 638          */
 639         if (vswp) {
 640                 fstype = vswp - vfssw;  /* Gets us the index */
 641         } else {
 642                 fstype = vfsp->vfs_fstype;
 643         }
 644 
 645         /*
 646          * Point to the per-fstype vopstats. The only valid values are
 647          * non-zero positive values less than the number of vfssw[] table
 648          * entries.
 649          */
 650         if (fstype > 0 && fstype < nfstype) {
 651                 vsp = vopstats_fstype[fstype];
 652         }
 653 
 654         return (vsp);
 655 }
 656 
 657 /*
 658  * Generate a kstat name, create the kstat structure, and allocate a
 659  * vsk_anchor_t to hold it together.  Return the pointer to the vsk_anchor_t
 660  * to the caller.  This must only be called from a mount.
 661  */
 662 vsk_anchor_t *
 663 get_vskstat_anchor(vfs_t *vfsp)
 664 {
 665         char            kstatstr[KSTAT_STRLEN]; /* kstat name for vopstats */
 666         statvfs64_t     statvfsbuf;             /* Needed to find f_fsid */
 667         vsk_anchor_t    *vskp = NULL;           /* vfs <--> kstat anchor */
 668         kstat_t         *ksp;                   /* Ptr to new kstat */
 669         avl_index_t     where;                  /* Location in the AVL tree */
 670 
 671         if (vfsp == NULL || vfsp->vfs_implp == NULL ||
 672             (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled)
 673                 return (NULL);
 674 
 675         /* Need to get the fsid to build a kstat name */
 676         if (VFS_STATVFS(vfsp, &statvfsbuf) == 0) {
 677                 /* Create a name for our kstats based on fsid */
 678                 (void) snprintf(kstatstr, KSTAT_STRLEN, "%s%lx",
 679                     VOPSTATS_STR, statvfsbuf.f_fsid);
 680 
 681                 /* Allocate and initialize the vsk_anchor_t */
 682                 vskp = kmem_cache_alloc(vsk_anchor_cache, KM_SLEEP);
 683                 bzero(vskp, sizeof (*vskp));
 684                 vskp->vsk_fsid = statvfsbuf.f_fsid;
 685 
 686                 mutex_enter(&vskstat_tree_lock);
 687                 if (avl_find(&vskstat_tree, vskp, &where) == NULL) {
 688                         avl_insert(&vskstat_tree, vskp, where);
 689                         mutex_exit(&vskstat_tree_lock);
 690 
 691                         /*
 692                          * Now that we've got the anchor in the AVL
 693                          * tree, we can create the kstat.
 694                          */
 695                         ksp = new_vskstat(kstatstr, &vfsp->vfs_vopstats);
 696                         if (ksp) {
 697                                 vskp->vsk_ksp = ksp;
 698                         }
 699                 } else {
 700                         /* Oops, found one! Release memory and lock. */
 701                         mutex_exit(&vskstat_tree_lock);
 702                         kmem_cache_free(vsk_anchor_cache, vskp);
 703                         vskp = NULL;
 704                 }
 705         }
 706         return (vskp);
 707 }
 708 
 709 /*
 710  * We're in the process of tearing down the vfs and need to cleanup
 711  * the data structures associated with the vopstats. Must only be called
 712  * from dounmount().
 713  */
 714 void
 715 teardown_vopstats(vfs_t *vfsp)
 716 {
 717         vsk_anchor_t    *vskap;
 718         avl_index_t     where;
 719 
 720         if (vfsp == NULL || vfsp->vfs_implp == NULL ||
 721             (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled)
 722                 return;
 723 
 724         /* This is a safe check since VFS_STATS must be set (see above) */
 725         if ((vskap = vfsp->vfs_vskap) == NULL)
 726                 return;
 727 
 728         /* Whack the pointer right away */
 729         vfsp->vfs_vskap = NULL;
 730 
 731         /* Lock the tree, remove the node, and delete the kstat */
 732         mutex_enter(&vskstat_tree_lock);
 733         if (avl_find(&vskstat_tree, vskap, &where)) {
 734                 avl_remove(&vskstat_tree, vskap);
 735         }
 736 
 737         if (vskap->vsk_ksp) {
 738                 kstat_delete(vskap->vsk_ksp);
 739         }
 740         mutex_exit(&vskstat_tree_lock);
 741 
 742         kmem_cache_free(vsk_anchor_cache, vskap);
 743 }
 744 
 745 /*
 746  * Read or write a vnode.  Called from kernel code.
 747  */
 748 int
 749 vn_rdwr(
 750         enum uio_rw rw,
 751         struct vnode *vp,
 752         caddr_t base,
 753         ssize_t len,
 754         offset_t offset,
 755         enum uio_seg seg,
 756         int ioflag,
 757         rlim64_t ulimit,        /* meaningful only if rw is UIO_WRITE */
 758         cred_t *cr,
 759         ssize_t *residp)
 760 {
 761         struct uio uio;
 762         struct iovec iov;
 763         int error;
 764         int in_crit = 0;
 765 
 766         if (rw == UIO_WRITE && ISROFILE(vp))
 767                 return (EROFS);
 768 
 769         if (len < 0)
 770                 return (EIO);
 771 
 772         VOPXID_MAP_CR(vp, cr);
 773 
 774         iov.iov_base = base;
 775         iov.iov_len = len;
 776         uio.uio_iov = &iov;
 777         uio.uio_iovcnt = 1;
 778         uio.uio_loffset = offset;
 779         uio.uio_segflg = (short)seg;
 780         uio.uio_resid = len;
 781         uio.uio_llimit = ulimit;
 782 
 783         /*
 784          * We have to enter the critical region before calling VOP_RWLOCK
 785          * to avoid a deadlock with ufs.
 786          */
 787         if (nbl_need_check(vp)) {
 788                 int svmand;
 789 
 790                 nbl_start_crit(vp, RW_READER);
 791                 in_crit = 1;
 792                 error = nbl_svmand(vp, cr, &svmand);
 793                 if (error != 0)
 794                         goto done;
 795                 if (nbl_conflict(vp, rw == UIO_WRITE ? NBL_WRITE : NBL_READ,
 796                     uio.uio_offset, uio.uio_resid, svmand, NULL)) {
 797                         error = EACCES;
 798                         goto done;
 799                 }
 800         }
 801 
 802         (void) VOP_RWLOCK(vp,
 803             rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL);
 804         if (rw == UIO_WRITE) {
 805                 uio.uio_fmode = FWRITE;
 806                 uio.uio_extflg = UIO_COPY_DEFAULT;
 807                 error = VOP_WRITE(vp, &uio, ioflag, cr, NULL);
 808         } else {
 809                 uio.uio_fmode = FREAD;
 810                 uio.uio_extflg = UIO_COPY_CACHED;
 811                 error = VOP_READ(vp, &uio, ioflag, cr, NULL);
 812         }
 813         VOP_RWUNLOCK(vp,
 814             rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL);
 815         if (residp)
 816                 *residp = uio.uio_resid;
 817         else if (uio.uio_resid)
 818                 error = EIO;
 819 
 820 done:
 821         if (in_crit)
 822                 nbl_end_crit(vp);
 823         return (error);
 824 }
 825 
 826 /*
 827  * Release a vnode.  Call VOP_INACTIVE on last reference or
 828  * decrement reference count.
 829  *
 830  * To avoid race conditions, the v_count is left at 1 for
 831  * the call to VOP_INACTIVE. This prevents another thread
 832  * from reclaiming and releasing the vnode *before* the
 833  * VOP_INACTIVE routine has a chance to destroy the vnode.
 834  * We can't have more than 1 thread calling VOP_INACTIVE
 835  * on a vnode.
 836  */
 837 void
 838 vn_rele(vnode_t *vp)
 839 {
 840         VERIFY(vp->v_count > 0);
 841         mutex_enter(&vp->v_lock);
 842         if (vp->v_count == 1) {
 843                 mutex_exit(&vp->v_lock);
 844                 VOP_INACTIVE(vp, CRED(), NULL);
 845                 return;
 846         }
 847         VN_RELE_LOCKED(vp);
 848         mutex_exit(&vp->v_lock);
 849 }
 850 
 851 /*
 852  * Release a vnode referenced by the DNLC. Multiple DNLC references are treated
 853  * as a single reference, so v_count is not decremented until the last DNLC hold
 854  * is released. This makes it possible to distinguish vnodes that are referenced
 855  * only by the DNLC.
 856  */
 857 void
 858 vn_rele_dnlc(vnode_t *vp)
 859 {
 860         VERIFY((vp->v_count > 0) && (vp->v_count_dnlc > 0));
 861         mutex_enter(&vp->v_lock);
 862         if (--vp->v_count_dnlc == 0) {
 863                 if (vp->v_count == 1) {
 864                         mutex_exit(&vp->v_lock);
 865                         VOP_INACTIVE(vp, CRED(), NULL);
 866                         return;
 867                 }
 868                 VN_RELE_LOCKED(vp);
 869         }
 870         mutex_exit(&vp->v_lock);
 871 }
 872 
 873 /*
 874  * Like vn_rele() except that it clears v_stream under v_lock.
 875  * This is used by sockfs when it dismantles the association between
 876  * the sockfs node and the vnode in the underlying file system.
 877  * v_lock has to be held to prevent a thread coming through the lookupname
 878  * path from accessing a stream head that is going away.
 879  */
 880 void
 881 vn_rele_stream(vnode_t *vp)
 882 {
 883         VERIFY(vp->v_count > 0);
 884         mutex_enter(&vp->v_lock);
 885         vp->v_stream = NULL;
 886         if (vp->v_count == 1) {
 887                 mutex_exit(&vp->v_lock);
 888                 VOP_INACTIVE(vp, CRED(), NULL);
 889                 return;
 890         }
 891         VN_RELE_LOCKED(vp);
 892         mutex_exit(&vp->v_lock);
 893 }
 894 
 895 static void
 896 vn_rele_inactive(vnode_t *vp)
 897 {
 898         VOP_INACTIVE(vp, CRED(), NULL);
 899 }
 900 
 901 /*
 902  * Like vn_rele() except if we are going to call VOP_INACTIVE() then do it
 903  * asynchronously using a taskq. This can avoid deadlocks caused by re-entering
 904  * the file system as a result of releasing the vnode. Note, file systems
 905  * already have to handle the race where the vnode is incremented before the
 906  * inactive routine is called and does its locking.
 907  *
 908  * Warning: Excessive use of this routine can lead to performance problems.
 909  * This is because taskqs throttle back allocation if too many are created.
 910  */
 911 void
 912 vn_rele_async(vnode_t *vp, taskq_t *taskq)
 913 {
 914         VERIFY(vp->v_count > 0);
 915         mutex_enter(&vp->v_lock);
 916         if (vp->v_count == 1) {
 917                 mutex_exit(&vp->v_lock);
 918                 VERIFY(taskq_dispatch(taskq, (task_func_t *)vn_rele_inactive,
 919                     vp, TQ_SLEEP) != TASKQID_INVALID);
 920                 return;
 921         }
 922         VN_RELE_LOCKED(vp);
 923         mutex_exit(&vp->v_lock);
 924 }
 925 
 926 int
 927 vn_open(
 928         char *pnamep,
 929         enum uio_seg seg,
 930         int filemode,
 931         int createmode,
 932         struct vnode **vpp,
 933         enum create crwhy,
 934         mode_t umask)
 935 {
 936         return (vn_openat(pnamep, seg, filemode, createmode, vpp, crwhy,
 937             umask, NULL, -1));
 938 }
 939 
 940 
 941 /*
 942  * Open/create a vnode.
 943  * This may be callable by the kernel, the only known use
 944  * of user context being that the current user credentials
 945  * are used for permissions.  crwhy is defined iff filemode & FCREAT.
 946  */
 947 int
 948 vn_openat(
 949         char *pnamep,
 950         enum uio_seg seg,
 951         int filemode,
 952         int createmode,
 953         struct vnode **vpp,
 954         enum create crwhy,
 955         mode_t umask,
 956         struct vnode *startvp,
 957         int fd)
 958 {
 959         struct vnode *vp;
 960         int mode;
 961         int accessflags;
 962         int error;
 963         int in_crit = 0;
 964         int open_done = 0;
 965         int shrlock_done = 0;
 966         struct vattr vattr;
 967         enum symfollow follow;
 968         int estale_retry = 0;
 969         struct shrlock shr;
 970         struct shr_locowner shr_own;
 971         boolean_t create;
 972 
 973         mode = 0;
 974         accessflags = 0;
 975         if (filemode & FREAD)
 976                 mode |= VREAD;
 977         if (filemode & (FWRITE|FTRUNC))
 978                 mode |= VWRITE;
 979         if (filemode & (FSEARCH|FEXEC|FXATTRDIROPEN))
 980                 mode |= VEXEC;
 981 
 982         /* symlink interpretation */
 983         if (filemode & FNOFOLLOW)
 984                 follow = NO_FOLLOW;
 985         else
 986                 follow = FOLLOW;
 987 
 988         if (filemode & FAPPEND)
 989                 accessflags |= V_APPEND;
 990 
 991         /*
 992          * We need to handle the case of FCREAT | FDIRECTORY and the case of
 993          * FEXCL. If all three are specified, then we always fail because we
 994          * cannot create a directory through this interface and FEXCL says we
 995          * need to fail the request if we can't create it. If, however, only
 996          * FCREAT | FDIRECTORY are specified, then we can treat this as the case
 997          * of opening a file that already exists. If it exists, we can do
 998          * something and if not, we fail. Effectively FCREAT | FDIRECTORY is
 999          * treated as FDIRECTORY.
1000          */
1001         if ((filemode & (FCREAT | FDIRECTORY | FEXCL)) ==
1002             (FCREAT | FDIRECTORY | FEXCL)) {
1003                 return (EINVAL);
1004         }
1005 
1006         if ((filemode & (FCREAT | FDIRECTORY)) == (FCREAT | FDIRECTORY)) {
1007                 create = B_FALSE;
1008         } else if ((filemode & FCREAT) != 0) {
1009                 create = B_TRUE;
1010         } else {
1011                 create = B_FALSE;
1012         }
1013 
1014 top:
1015         if (create) {
1016                 enum vcexcl excl;
1017 
1018                 /*
1019                  * Wish to create a file.
1020                  */
1021                 vattr.va_type = VREG;
1022                 vattr.va_mode = createmode;
1023                 vattr.va_mask = AT_TYPE|AT_MODE;
1024                 if (filemode & FTRUNC) {
1025                         vattr.va_size = 0;
1026                         vattr.va_mask |= AT_SIZE;
1027                 }
1028                 if (filemode & FEXCL)
1029                         excl = EXCL;
1030                 else
1031                         excl = NONEXCL;
1032 
1033                 if (error =
1034                     vn_createat(pnamep, seg, &vattr, excl, mode, &vp, crwhy,
1035                     (filemode & ~(FTRUNC|FEXCL)), umask, startvp))
1036                         return (error);
1037         } else {
1038                 /*
1039                  * Wish to open a file.  Just look it up.
1040                  */
1041                 if (error = lookupnameat(pnamep, seg, follow,
1042                     NULLVPP, &vp, startvp)) {
1043                         if ((error == ESTALE) &&
1044                             fs_need_estale_retry(estale_retry++))
1045                                 goto top;
1046                         return (error);
1047                 }
1048 
1049                 /*
1050                  * Get the attributes to check whether file is large.
1051                  * We do this only if the FOFFMAX flag is not set and
1052                  * only for regular files.
1053                  */
1054 
1055                 if (!(filemode & FOFFMAX) && (vp->v_type == VREG)) {
1056                         vattr.va_mask = AT_SIZE;
1057                         if ((error = VOP_GETATTR(vp, &vattr, 0,
1058                             CRED(), NULL))) {
1059                                 goto out;
1060                         }
1061                         if (vattr.va_size > (u_offset_t)MAXOFF32_T) {
1062                                 /*
1063                                  * Large File API - regular open fails
1064                                  * if FOFFMAX flag is set in file mode
1065                                  */
1066                                 error = EOVERFLOW;
1067                                 goto out;
1068                         }
1069                 }
1070                 /*
1071                  * Can't write directories, active texts, or
1072                  * read-only filesystems.  Can't truncate files
1073                  * on which mandatory locking is in effect.
1074                  */
1075                 if (filemode & (FWRITE|FTRUNC)) {
1076                         /*
1077                          * Allow writable directory if VDIROPEN flag is set.
1078                          */
1079                         if (vp->v_type == VDIR && !(vp->v_flag & VDIROPEN)) {
1080                                 error = EISDIR;
1081                                 goto out;
1082                         }
1083                         if (ISROFILE(vp)) {
1084                                 error = EROFS;
1085                                 goto out;
1086                         }
1087                         /*
1088                          * Can't truncate files on which
1089                          * sysv mandatory locking is in effect.
1090                          */
1091                         if (filemode & FTRUNC) {
1092                                 vnode_t *rvp;
1093 
1094                                 if (VOP_REALVP(vp, &rvp, NULL) != 0)
1095                                         rvp = vp;
1096                                 if (rvp->v_filocks != NULL) {
1097                                         vattr.va_mask = AT_MODE;
1098                                         if ((error = VOP_GETATTR(vp,
1099                                             &vattr, 0, CRED(), NULL)) == 0 &&
1100                                             MANDLOCK(vp, vattr.va_mode))
1101                                                 error = EAGAIN;
1102                                 }
1103                         }
1104                         if (error)
1105                                 goto out;
1106                 }
1107                 /*
1108                  * Check permissions.
1109                  */
1110                 if (error = VOP_ACCESS(vp, mode, accessflags, CRED(), NULL))
1111                         goto out;
1112 
1113                 /*
1114                  * Require FSEARCH and FDIRECTORY to return a directory. Require
1115                  * FEXEC to return a regular file.
1116                  */
1117                 if ((filemode & (FSEARCH|FDIRECTORY)) != 0 &&
1118                     vp->v_type != VDIR) {
1119                         error = ENOTDIR;
1120                         goto out;
1121                 }
1122                 if ((filemode & FEXEC) && vp->v_type != VREG) {
1123                         error = ENOEXEC;        /* XXX: error code? */
1124                         goto out;
1125                 }
1126         }
1127 
1128         /*
1129          * Do remaining checks for FNOFOLLOW and FNOLINKS.
1130          */
1131         if ((filemode & FNOFOLLOW) && vp->v_type == VLNK) {
1132                 error = ELOOP;
1133                 goto out;
1134         }
1135         if (filemode & FNOLINKS) {
1136                 vattr.va_mask = AT_NLINK;
1137                 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))) {
1138                         goto out;
1139                 }
1140                 if (vattr.va_nlink != 1) {
1141                         error = EMLINK;
1142                         goto out;
1143                 }
1144         }
1145 
1146         /*
1147          * Opening a socket corresponding to the AF_UNIX pathname
1148          * in the filesystem name space is not supported.
1149          * However, VSOCK nodes in namefs are supported in order
1150          * to make fattach work for sockets.
1151          *
1152          * XXX This uses VOP_REALVP to distinguish between
1153          * an unopened namefs node (where VOP_REALVP returns a
1154          * different VSOCK vnode) and a VSOCK created by vn_create
1155          * in some file system (where VOP_REALVP would never return
1156          * a different vnode).
1157          */
1158         if (vp->v_type == VSOCK) {
1159                 struct vnode *nvp;
1160 
1161                 error = VOP_REALVP(vp, &nvp, NULL);
1162                 if (error != 0 || nvp == NULL || nvp == vp ||
1163                     nvp->v_type != VSOCK) {
1164                         error = EOPNOTSUPP;
1165                         goto out;
1166                 }
1167         }
1168 
1169         if ((vp->v_type == VREG) && nbl_need_check(vp)) {
1170                 /* get share reservation */
1171                 shr.s_access = 0;
1172                 if (filemode & FWRITE)
1173                         shr.s_access |= F_WRACC;
1174                 if (filemode & FREAD)
1175                         shr.s_access |= F_RDACC;
1176                 shr.s_deny = 0;
1177                 shr.s_sysid = 0;
1178                 shr.s_pid = ttoproc(curthread)->p_pid;
1179                 shr_own.sl_pid = shr.s_pid;
1180                 shr_own.sl_id = fd;
1181                 shr.s_own_len = sizeof (shr_own);
1182                 shr.s_owner = (caddr_t)&shr_own;
1183                 error = VOP_SHRLOCK(vp, F_SHARE_NBMAND, &shr, filemode, CRED(),
1184                     NULL);
1185                 if (error)
1186                         goto out;
1187                 shrlock_done = 1;
1188 
1189                 /* nbmand conflict check if truncating file */
1190                 if ((filemode & FTRUNC) && !(filemode & FCREAT)) {
1191                         nbl_start_crit(vp, RW_READER);
1192                         in_crit = 1;
1193 
1194                         vattr.va_mask = AT_SIZE;
1195                         if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))
1196                                 goto out;
1197                         if (nbl_conflict(vp, NBL_WRITE, 0, vattr.va_size, 0,
1198                             NULL)) {
1199                                 error = EACCES;
1200                                 goto out;
1201                         }
1202                 }
1203         }
1204 
1205         /*
1206          * Do opening protocol.
1207          */
1208         error = VOP_OPEN(&vp, filemode, CRED(), NULL);
1209         if (error)
1210                 goto out;
1211         open_done = 1;
1212 
1213         /*
1214          * Truncate if required.
1215          */
1216         if ((filemode & FTRUNC) && !(filemode & FCREAT)) {
1217                 vattr.va_size = 0;
1218                 vattr.va_mask = AT_SIZE;
1219                 if ((error = VOP_SETATTR(vp, &vattr, 0, CRED(), NULL)) != 0)
1220                         goto out;
1221         }
1222 
1223         /*
1224          * Turn on directio, if requested.
1225          */
1226         if (filemode & FDIRECT) {
1227                 if ((error = VOP_IOCTL(vp, _FIODIRECTIO, DIRECTIO_ON, 0,
1228                     CRED(), NULL, NULL)) != 0) {
1229                         /*
1230                          * On Linux, O_DIRECT returns EINVAL when the file
1231                          * system does not support directio, so we'll do the
1232                          * same.
1233                          */
1234                         error = EINVAL;
1235                         goto out;
1236                 }
1237         }
1238 out:
1239         ASSERT(vp->v_count > 0);
1240 
1241         if (in_crit) {
1242                 nbl_end_crit(vp);
1243                 in_crit = 0;
1244         }
1245         if (error) {
1246                 if (open_done) {
1247                         (void) VOP_CLOSE(vp, filemode, 1, (offset_t)0, CRED(),
1248                             NULL);
1249                         open_done = 0;
1250                         shrlock_done = 0;
1251                 }
1252                 if (shrlock_done) {
1253                         (void) VOP_SHRLOCK(vp, F_UNSHARE, &shr, 0, CRED(),
1254                             NULL);
1255                         shrlock_done = 0;
1256                 }
1257 
1258                 /*
1259                  * The following clause was added to handle a problem
1260                  * with NFS consistency.  It is possible that a lookup
1261                  * of the file to be opened succeeded, but the file
1262                  * itself doesn't actually exist on the server.  This
1263                  * is chiefly due to the DNLC containing an entry for
1264                  * the file which has been removed on the server.  In
1265                  * this case, we just start over.  If there was some
1266                  * other cause for the ESTALE error, then the lookup
1267                  * of the file will fail and the error will be returned
1268                  * above instead of looping around from here.
1269                  */
1270                 VN_RELE(vp);
1271                 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1272                         goto top;
1273         } else
1274                 *vpp = vp;
1275         return (error);
1276 }
1277 
1278 /*
1279  * The following two accessor functions are for the NFSv4 server.  Since there
1280  * is no VOP_OPEN_UP/DOWNGRADE we need a way for the NFS server to keep the
1281  * vnode open counts correct when a client "upgrades" an open or does an
1282  * open_downgrade.  In NFS, an upgrade or downgrade can not only change the
1283  * open mode (add or subtract read or write), but also change the share/deny
1284  * modes.  However, share reservations are not integrated with OPEN, yet, so
1285  * we need to handle each separately.  These functions are cleaner than having
1286  * the NFS server manipulate the counts directly, however, nobody else should
1287  * use these functions.
1288  */
1289 void
1290 vn_open_upgrade(
1291         vnode_t *vp,
1292         int filemode)
1293 {
1294         ASSERT(vp->v_type == VREG);
1295 
1296         if (filemode & FREAD)
1297                 atomic_inc_32(&vp->v_rdcnt);
1298         if (filemode & FWRITE)
1299                 atomic_inc_32(&vp->v_wrcnt);
1300 
1301 }
1302 
1303 void
1304 vn_open_downgrade(
1305         vnode_t *vp,
1306         int filemode)
1307 {
1308         ASSERT(vp->v_type == VREG);
1309 
1310         if (filemode & FREAD) {
1311                 ASSERT(vp->v_rdcnt > 0);
1312                 atomic_dec_32(&vp->v_rdcnt);
1313         }
1314         if (filemode & FWRITE) {
1315                 ASSERT(vp->v_wrcnt > 0);
1316                 atomic_dec_32(&vp->v_wrcnt);
1317         }
1318 
1319 }
1320 
1321 int
1322 vn_create(
1323         char *pnamep,
1324         enum uio_seg seg,
1325         struct vattr *vap,
1326         enum vcexcl excl,
1327         int mode,
1328         struct vnode **vpp,
1329         enum create why,
1330         int flag,
1331         mode_t umask)
1332 {
1333         return (vn_createat(pnamep, seg, vap, excl, mode, vpp, why, flag,
1334             umask, NULL));
1335 }
1336 
1337 /*
1338  * Create a vnode (makenode).
1339  */
1340 int
1341 vn_createat(
1342         char *pnamep,
1343         enum uio_seg seg,
1344         struct vattr *vap,
1345         enum vcexcl excl,
1346         int mode,
1347         struct vnode **vpp,
1348         enum create why,
1349         int flag,
1350         mode_t umask,
1351         struct vnode *startvp)
1352 {
1353         struct vnode *dvp;      /* ptr to parent dir vnode */
1354         struct vnode *vp = NULL;
1355         struct pathname pn;
1356         int error;
1357         int in_crit = 0;
1358         struct vattr vattr;
1359         enum symfollow follow;
1360         int estale_retry = 0;
1361         uint32_t auditing = AU_AUDITING();
1362 
1363         ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
1364 
1365         /* symlink interpretation */
1366         if ((flag & FNOFOLLOW) || excl == EXCL)
1367                 follow = NO_FOLLOW;
1368         else
1369                 follow = FOLLOW;
1370         flag &= ~(FNOFOLLOW|FNOLINKS);
1371 
1372 top:
1373         /*
1374          * Lookup directory.
1375          * If new object is a file, call lower level to create it.
1376          * Note that it is up to the lower level to enforce exclusive
1377          * creation, if the file is already there.
1378          * This allows the lower level to do whatever
1379          * locking or protocol that is needed to prevent races.
1380          * If the new object is directory call lower level to make
1381          * the new directory, with "." and "..".
1382          */
1383         if (error = pn_get(pnamep, seg, &pn))
1384                 return (error);
1385         if (auditing)
1386                 audit_vncreate_start();
1387         dvp = NULL;
1388         *vpp = NULL;
1389         /*
1390          * lookup will find the parent directory for the vnode.
1391          * When it is done the pn holds the name of the entry
1392          * in the directory.
1393          * If this is a non-exclusive create we also find the node itself.
1394          */
1395         error = lookuppnat(&pn, NULL, follow, &dvp,
1396             (excl == EXCL) ? NULLVPP : vpp, startvp);
1397         if (error) {
1398                 pn_free(&pn);
1399                 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1400                         goto top;
1401                 if (why == CRMKDIR && error == EINVAL)
1402                         error = EEXIST;         /* SVID */
1403                 return (error);
1404         }
1405 
1406         if (why != CRMKNOD)
1407                 vap->va_mode &= ~VSVTX;
1408 
1409         /*
1410          * If default ACLs are defined for the directory don't apply the
1411          * umask if umask is passed.
1412          */
1413 
1414         if (umask) {
1415 
1416                 vsecattr_t vsec;
1417 
1418                 vsec.vsa_aclcnt = 0;
1419                 vsec.vsa_aclentp = NULL;
1420                 vsec.vsa_dfaclcnt = 0;
1421                 vsec.vsa_dfaclentp = NULL;
1422                 vsec.vsa_mask = VSA_DFACLCNT;
1423                 error = VOP_GETSECATTR(dvp, &vsec, 0, CRED(), NULL);
1424                 /*
1425                  * If error is ENOSYS then treat it as no error
1426                  * Don't want to force all file systems to support
1427                  * aclent_t style of ACL's.
1428                  */
1429                 if (error == ENOSYS)
1430                         error = 0;
1431                 if (error) {
1432                         if (*vpp != NULL)
1433                                 VN_RELE(*vpp);
1434                         goto out;
1435                 } else {
1436                         /*
1437                          * Apply the umask if no default ACLs.
1438                          */
1439                         if (vsec.vsa_dfaclcnt == 0)
1440                                 vap->va_mode &= ~umask;
1441 
1442                         /*
1443                          * VOP_GETSECATTR() may have allocated memory for
1444                          * ACLs we didn't request, so double-check and
1445                          * free it if necessary.
1446                          */
1447                         if (vsec.vsa_aclcnt && vsec.vsa_aclentp != NULL)
1448                                 kmem_free((caddr_t)vsec.vsa_aclentp,
1449                                     vsec.vsa_aclcnt * sizeof (aclent_t));
1450                         if (vsec.vsa_dfaclcnt && vsec.vsa_dfaclentp != NULL)
1451                                 kmem_free((caddr_t)vsec.vsa_dfaclentp,
1452                                     vsec.vsa_dfaclcnt * sizeof (aclent_t));
1453                 }
1454         }
1455 
1456         /*
1457          * In general we want to generate EROFS if the file system is
1458          * readonly.  However, POSIX (IEEE Std. 1003.1) section 5.3.1
1459          * documents the open system call, and it says that O_CREAT has no
1460          * effect if the file already exists.  Bug 1119649 states
1461          * that open(path, O_CREAT, ...) fails when attempting to open an
1462          * existing file on a read only file system.  Thus, the first part
1463          * of the following if statement has 3 checks:
1464          *      if the file exists &&
1465          *              it is being open with write access &&
1466          *              the file system is read only
1467          *      then generate EROFS
1468          */
1469         if ((*vpp != NULL && (mode & VWRITE) && ISROFILE(*vpp)) ||
1470             (*vpp == NULL && dvp->v_vfsp->vfs_flag & VFS_RDONLY)) {
1471                 if (*vpp)
1472                         VN_RELE(*vpp);
1473                 error = EROFS;
1474         } else if (excl == NONEXCL && *vpp != NULL) {
1475                 vnode_t *rvp;
1476 
1477                 /*
1478                  * File already exists.  If a mandatory lock has been
1479                  * applied, return error.
1480                  */
1481                 vp = *vpp;
1482                 if (VOP_REALVP(vp, &rvp, NULL) != 0)
1483                         rvp = vp;
1484                 if ((vap->va_mask & AT_SIZE) && nbl_need_check(vp)) {
1485                         nbl_start_crit(vp, RW_READER);
1486                         in_crit = 1;
1487                 }
1488                 if (rvp->v_filocks != NULL || rvp->v_shrlocks != NULL) {
1489                         vattr.va_mask = AT_MODE|AT_SIZE;
1490                         if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL)) {
1491                                 goto out;
1492                         }
1493                         if (MANDLOCK(vp, vattr.va_mode)) {
1494                                 error = EAGAIN;
1495                                 goto out;
1496                         }
1497                         /*
1498                          * File cannot be truncated if non-blocking mandatory
1499                          * locks are currently on the file.
1500                          */
1501                         if ((vap->va_mask & AT_SIZE) && in_crit) {
1502                                 u_offset_t offset;
1503                                 ssize_t length;
1504 
1505                                 offset = vap->va_size > vattr.va_size ?
1506                                     vattr.va_size : vap->va_size;
1507                                 length = vap->va_size > vattr.va_size ?
1508                                     vap->va_size - vattr.va_size :
1509                                     vattr.va_size - vap->va_size;
1510                                 if (nbl_conflict(vp, NBL_WRITE, offset,
1511                                     length, 0, NULL)) {
1512                                         error = EACCES;
1513                                         goto out;
1514                                 }
1515                         }
1516                 }
1517 
1518                 /*
1519                  * If the file is the root of a VFS, we've crossed a
1520                  * mount point and the "containing" directory that we
1521                  * acquired above (dvp) is irrelevant because it's in
1522                  * a different file system.  We apply VOP_CREATE to the
1523                  * target itself instead of to the containing directory
1524                  * and supply a null path name to indicate (conventionally)
1525                  * the node itself as the "component" of interest.
1526                  *
1527                  * The call to VOP_CREATE() is necessary to ensure
1528                  * that the appropriate permission checks are made,
1529                  * i.e. EISDIR, EACCES, etc.  We already know that vpp
1530                  * exists since we are in the else condition where this
1531                  * was checked.
1532                  */
1533                 if (vp->v_flag & VROOT) {
1534                         ASSERT(why != CRMKDIR);
1535                         error = VOP_CREATE(vp, "", vap, excl, mode, vpp,
1536                             CRED(), flag, NULL, NULL);
1537                         /*
1538                          * If the create succeeded, it will have created a
1539                          * new reference on a new vnode (*vpp) in the child
1540                          * file system, so we want to drop our reference on
1541                          * the old (vp) upon exit.
1542                          */
1543                         goto out;
1544                 }
1545 
1546                 /*
1547                  * Large File API - non-large open (FOFFMAX flag not set)
1548                  * of regular file fails if the file size exceeds MAXOFF32_T.
1549                  */
1550                 if (why != CRMKDIR &&
1551                     !(flag & FOFFMAX) &&
1552                     (vp->v_type == VREG)) {
1553                         vattr.va_mask = AT_SIZE;
1554                         if ((error = VOP_GETATTR(vp, &vattr, 0,
1555                             CRED(), NULL))) {
1556                                 goto out;
1557                         }
1558                         if ((vattr.va_size > (u_offset_t)MAXOFF32_T)) {
1559                                 error = EOVERFLOW;
1560                                 goto out;
1561                         }
1562                 }
1563         }
1564 
1565         if (error == 0) {
1566                 /*
1567                  * Call mkdir() if specified, otherwise create().
1568                  */
1569                 int must_be_dir = pn_fixslash(&pn); /* trailing '/'? */
1570 
1571                 if (why == CRMKDIR)
1572                         /*
1573                          * N.B., if vn_createat() ever requests
1574                          * case-insensitive behavior then it will need
1575                          * to be passed to VOP_MKDIR().  VOP_CREATE()
1576                          * will already get it via "flag"
1577                          */
1578                         error = VOP_MKDIR(dvp, pn.pn_path, vap, vpp, CRED(),
1579                             NULL, 0, NULL);
1580                 else if (!must_be_dir)
1581                         error = VOP_CREATE(dvp, pn.pn_path, vap,
1582                             excl, mode, vpp, CRED(), flag, NULL, NULL);
1583                 else
1584                         error = ENOTDIR;
1585         }
1586 
1587 out:
1588 
1589         if (auditing)
1590                 audit_vncreate_finish(*vpp, error);
1591         if (in_crit) {
1592                 nbl_end_crit(vp);
1593                 in_crit = 0;
1594         }
1595         if (vp != NULL) {
1596                 VN_RELE(vp);
1597                 vp = NULL;
1598         }
1599         pn_free(&pn);
1600         VN_RELE(dvp);
1601         /*
1602          * The following clause was added to handle a problem
1603          * with NFS consistency.  It is possible that a lookup
1604          * of the file to be created succeeded, but the file
1605          * itself doesn't actually exist on the server.  This
1606          * is chiefly due to the DNLC containing an entry for
1607          * the file which has been removed on the server.  In
1608          * this case, we just start over.  If there was some
1609          * other cause for the ESTALE error, then the lookup
1610          * of the file will fail and the error will be returned
1611          * above instead of looping around from here.
1612          */
1613         if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1614                 goto top;
1615         return (error);
1616 }
1617 
1618 int
1619 vn_link(char *from, char *to, enum uio_seg seg)
1620 {
1621         return (vn_linkat(NULL, from, NO_FOLLOW, NULL, to, seg));
1622 }
1623 
1624 int
1625 vn_linkat(vnode_t *fstartvp, char *from, enum symfollow follow,
1626     vnode_t *tstartvp, char *to, enum uio_seg seg)
1627 {
1628         struct vnode *fvp;              /* from vnode ptr */
1629         struct vnode *tdvp;             /* to directory vnode ptr */
1630         struct pathname pn;
1631         int error;
1632         struct vattr vattr;
1633         dev_t fsid;
1634         int estale_retry = 0;
1635         uint32_t auditing = AU_AUDITING();
1636 
1637 top:
1638         fvp = tdvp = NULL;
1639         if (error = pn_get(to, seg, &pn))
1640                 return (error);
1641         if (auditing && fstartvp != NULL)
1642                 audit_setfsat_path(1);
1643         if (error = lookupnameat(from, seg, follow, NULLVPP, &fvp, fstartvp))
1644                 goto out;
1645         if (auditing && tstartvp != NULL)
1646                 audit_setfsat_path(3);
1647         if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &tdvp, NULLVPP, tstartvp))
1648                 goto out;
1649         /*
1650          * Make sure both source vnode and target directory vnode are
1651          * in the same vfs and that it is writeable.
1652          */
1653         vattr.va_mask = AT_FSID;
1654         if (error = VOP_GETATTR(fvp, &vattr, 0, CRED(), NULL))
1655                 goto out;
1656         fsid = vattr.va_fsid;
1657         vattr.va_mask = AT_FSID;
1658         if (error = VOP_GETATTR(tdvp, &vattr, 0, CRED(), NULL))
1659                 goto out;
1660         if (fsid != vattr.va_fsid) {
1661                 error = EXDEV;
1662                 goto out;
1663         }
1664         if (tdvp->v_vfsp->vfs_flag & VFS_RDONLY) {
1665                 error = EROFS;
1666                 goto out;
1667         }
1668         /*
1669          * Do the link.
1670          */
1671         (void) pn_fixslash(&pn);
1672         error = VOP_LINK(tdvp, fvp, pn.pn_path, CRED(), NULL, 0);
1673 out:
1674         pn_free(&pn);
1675         if (fvp)
1676                 VN_RELE(fvp);
1677         if (tdvp)
1678                 VN_RELE(tdvp);
1679         if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1680                 goto top;
1681         return (error);
1682 }
1683 
1684 int
1685 vn_rename(char *from, char *to, enum uio_seg seg)
1686 {
1687         return (vn_renameat(NULL, from, NULL, to, seg));
1688 }
1689 
1690 int
1691 vn_renameat(vnode_t *fdvp, char *fname, vnode_t *tdvp,
1692     char *tname, enum uio_seg seg)
1693 {
1694         int error;
1695         struct vattr vattr;
1696         struct pathname fpn;            /* from pathname */
1697         struct pathname tpn;            /* to pathname */
1698         dev_t fsid;
1699         int in_crit_src, in_crit_targ;
1700         vnode_t *fromvp, *fvp;
1701         vnode_t *tovp, *targvp;
1702         int estale_retry = 0;
1703         uint32_t auditing = AU_AUDITING();
1704 
1705 top:
1706         fvp = fromvp = tovp = targvp = NULL;
1707         in_crit_src = in_crit_targ = 0;
1708         /*
1709          * Get to and from pathnames.
1710          */
1711         if (error = pn_get(fname, seg, &fpn))
1712                 return (error);
1713         if (error = pn_get(tname, seg, &tpn)) {
1714                 pn_free(&fpn);
1715                 return (error);
1716         }
1717 
1718         /*
1719          * First we need to resolve the correct directories
1720          * The passed in directories may only be a starting point,
1721          * but we need the real directories the file(s) live in.
1722          * For example the fname may be something like usr/lib/sparc
1723          * and we were passed in the / directory, but we need to
1724          * use the lib directory for the rename.
1725          */
1726 
1727         if (auditing && fdvp != NULL)
1728                 audit_setfsat_path(1);
1729         /*
1730          * Lookup to and from directories.
1731          */
1732         if (error = lookuppnat(&fpn, NULL, NO_FOLLOW, &fromvp, &fvp, fdvp)) {
1733                 goto out;
1734         }
1735 
1736         /*
1737          * Make sure there is an entry.
1738          */
1739         if (fvp == NULL) {
1740                 error = ENOENT;
1741                 goto out;
1742         }
1743 
1744         if (auditing && tdvp != NULL)
1745                 audit_setfsat_path(3);
1746         if (error = lookuppnat(&tpn, NULL, NO_FOLLOW, &tovp, &targvp, tdvp)) {
1747                 goto out;
1748         }
1749 
1750         /*
1751          * Make sure both the from vnode directory and the to directory
1752          * are in the same vfs and the to directory is writable.
1753          * We check fsid's, not vfs pointers, so loopback fs works.
1754          */
1755         if (fromvp != tovp) {
1756                 vattr.va_mask = AT_FSID;
1757                 if (error = VOP_GETATTR(fromvp, &vattr, 0, CRED(), NULL))
1758                         goto out;
1759                 fsid = vattr.va_fsid;
1760                 vattr.va_mask = AT_FSID;
1761                 if (error = VOP_GETATTR(tovp, &vattr, 0, CRED(), NULL))
1762                         goto out;
1763                 if (fsid != vattr.va_fsid) {
1764                         error = EXDEV;
1765                         goto out;
1766                 }
1767         }
1768 
1769         if (tovp->v_vfsp->vfs_flag & VFS_RDONLY) {
1770                 error = EROFS;
1771                 goto out;
1772         }
1773 
1774         /*
1775          * Make sure "from" vp is not a mount point.
1776          * Note, lookup did traverse() already, so
1777          * we'll be looking at the mounted FS root.
1778          * (but allow files like mnttab)
1779          */
1780         if ((fvp->v_flag & VROOT) != 0 && fvp->v_type == VDIR) {
1781                 error = EBUSY;
1782                 goto out;
1783         }
1784 
1785         if (targvp && (fvp != targvp)) {
1786                 nbl_start_crit(targvp, RW_READER);
1787                 in_crit_targ = 1;
1788                 if (nbl_conflict(targvp, NBL_REMOVE, 0, 0, 0, NULL)) {
1789                         error = EACCES;
1790                         goto out;
1791                 }
1792         }
1793 
1794         if (nbl_need_check(fvp)) {
1795                 nbl_start_crit(fvp, RW_READER);
1796                 in_crit_src = 1;
1797                 if (nbl_conflict(fvp, NBL_RENAME, 0, 0, 0, NULL)) {
1798                         error = EACCES;
1799                         goto out;
1800                 }
1801         }
1802 
1803         /*
1804          * Do the rename.
1805          */
1806         (void) pn_fixslash(&tpn);
1807         error = VOP_RENAME(fromvp, fpn.pn_path, tovp, tpn.pn_path, CRED(),
1808             NULL, 0);
1809 
1810 out:
1811         pn_free(&fpn);
1812         pn_free(&tpn);
1813         if (in_crit_src)
1814                 nbl_end_crit(fvp);
1815         if (in_crit_targ)
1816                 nbl_end_crit(targvp);
1817         if (fromvp)
1818                 VN_RELE(fromvp);
1819         if (tovp)
1820                 VN_RELE(tovp);
1821         if (targvp)
1822                 VN_RELE(targvp);
1823         if (fvp)
1824                 VN_RELE(fvp);
1825         if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1826                 goto top;
1827         return (error);
1828 }
1829 
1830 /*
1831  * Remove a file or directory.
1832  */
1833 int
1834 vn_remove(char *fnamep, enum uio_seg seg, enum rm dirflag)
1835 {
1836         return (vn_removeat(NULL, fnamep, seg, dirflag));
1837 }
1838 
1839 int
1840 vn_removeat(vnode_t *startvp, char *fnamep, enum uio_seg seg, enum rm dirflag)
1841 {
1842         struct vnode *vp;               /* entry vnode */
1843         struct vnode *dvp;              /* ptr to parent dir vnode */
1844         struct vnode *coveredvp;
1845         struct pathname pn;             /* name of entry */
1846         enum vtype vtype;
1847         int error;
1848         struct vfs *vfsp;
1849         struct vfs *dvfsp;      /* ptr to parent dir vfs */
1850         int in_crit = 0;
1851         int estale_retry = 0;
1852 
1853 top:
1854         if (error = pn_get(fnamep, seg, &pn))
1855                 return (error);
1856         dvp = vp = NULL;
1857         if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &dvp, &vp, startvp)) {
1858                 pn_free(&pn);
1859                 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1860                         goto top;
1861                 return (error);
1862         }
1863 
1864         /*
1865          * Make sure there is an entry.
1866          */
1867         if (vp == NULL) {
1868                 error = ENOENT;
1869                 goto out;
1870         }
1871 
1872         vfsp = vp->v_vfsp;
1873         dvfsp = dvp->v_vfsp;
1874 
1875         /*
1876          * If the named file is the root of a mounted filesystem, fail,
1877          * unless it's marked unlinkable.  In that case, unmount the
1878          * filesystem and proceed to unlink the covered vnode.  (If the
1879          * covered vnode is a directory, use rmdir instead of unlink,
1880          * to avoid file system corruption.)
1881          */
1882         if (vp->v_flag & VROOT) {
1883                 if ((vfsp->vfs_flag & VFS_UNLINKABLE) == 0) {
1884                         error = EBUSY;
1885                         goto out;
1886                 }
1887 
1888                 /*
1889                  * Namefs specific code starts here.
1890                  */
1891 
1892                 if (dirflag == RMDIRECTORY) {
1893                         /*
1894                          * User called rmdir(2) on a file that has
1895                          * been namefs mounted on top of.  Since
1896                          * namefs doesn't allow directories to
1897                          * be mounted on other files we know
1898                          * vp is not of type VDIR so fail to operation.
1899                          */
1900                         error = ENOTDIR;
1901                         goto out;
1902                 }
1903 
1904                 /*
1905                  * If VROOT is still set after grabbing vp->v_lock,
1906                  * noone has finished nm_unmount so far and coveredvp
1907                  * is valid.
1908                  * If we manage to grab vn_vfswlock(coveredvp) before releasing
1909                  * vp->v_lock, any race window is eliminated.
1910                  */
1911 
1912                 mutex_enter(&vp->v_lock);
1913                 if ((vp->v_flag & VROOT) == 0) {
1914                         /* Someone beat us to the unmount */
1915                         mutex_exit(&vp->v_lock);
1916                         error = EBUSY;
1917                         goto out;
1918                 }
1919                 vfsp = vp->v_vfsp;
1920                 coveredvp = vfsp->vfs_vnodecovered;
1921                 ASSERT(coveredvp);
1922                 /*
1923                  * Note: Implementation of vn_vfswlock shows that ordering of
1924                  * v_lock / vn_vfswlock is not an issue here.
1925                  */
1926                 error = vn_vfswlock(coveredvp);
1927                 mutex_exit(&vp->v_lock);
1928 
1929                 if (error)
1930                         goto out;
1931 
1932                 VN_HOLD(coveredvp);
1933                 VN_RELE(vp);
1934                 error = dounmount(vfsp, 0, CRED());
1935 
1936                 /*
1937                  * Unmounted the namefs file system; now get
1938                  * the object it was mounted over.
1939                  */
1940                 vp = coveredvp;
1941                 /*
1942                  * If namefs was mounted over a directory, then
1943                  * we want to use rmdir() instead of unlink().
1944                  */
1945                 if (vp->v_type == VDIR)
1946                         dirflag = RMDIRECTORY;
1947 
1948                 if (error)
1949                         goto out;
1950         }
1951 
1952         /*
1953          * Make sure filesystem is writeable.
1954          * We check the parent directory's vfs in case this is an lofs vnode.
1955          */
1956         if (dvfsp && dvfsp->vfs_flag & VFS_RDONLY) {
1957                 error = EROFS;
1958                 goto out;
1959         }
1960 
1961         vtype = vp->v_type;
1962 
1963         /*
1964          * If there is the possibility of an nbmand share reservation, make
1965          * sure it's okay to remove the file.  Keep a reference to the
1966          * vnode, so that we can exit the nbl critical region after
1967          * calling VOP_REMOVE.
1968          * If there is no possibility of an nbmand share reservation,
1969          * release the vnode reference now.  Filesystems like NFS may
1970          * behave differently if there is an extra reference, so get rid of
1971          * this one.  Fortunately, we can't have nbmand mounts on NFS
1972          * filesystems.
1973          */
1974         if (nbl_need_check(vp)) {
1975                 nbl_start_crit(vp, RW_READER);
1976                 in_crit = 1;
1977                 if (nbl_conflict(vp, NBL_REMOVE, 0, 0, 0, NULL)) {
1978                         error = EACCES;
1979                         goto out;
1980                 }
1981         } else {
1982                 VN_RELE(vp);
1983                 vp = NULL;
1984         }
1985 
1986         if (dirflag == RMDIRECTORY) {
1987                 /*
1988                  * Caller is using rmdir(2), which can only be applied to
1989                  * directories.
1990                  */
1991                 if (vtype != VDIR) {
1992                         error = ENOTDIR;
1993                 } else {
1994                         vnode_t *cwd;
1995                         proc_t *pp = curproc;
1996 
1997                         mutex_enter(&pp->p_lock);
1998                         cwd = PTOU(pp)->u_cdir;
1999                         VN_HOLD(cwd);
2000                         mutex_exit(&pp->p_lock);
2001                         error = VOP_RMDIR(dvp, pn.pn_path, cwd, CRED(),
2002                             NULL, 0);
2003                         VN_RELE(cwd);
2004                 }
2005         } else {
2006                 /*
2007                  * Unlink(2) can be applied to anything.
2008                  */
2009                 error = VOP_REMOVE(dvp, pn.pn_path, CRED(), NULL, 0);
2010         }
2011 
2012 out:
2013         pn_free(&pn);
2014         if (in_crit) {
2015                 nbl_end_crit(vp);
2016                 in_crit = 0;
2017         }
2018         if (vp != NULL)
2019                 VN_RELE(vp);
2020         if (dvp != NULL)
2021                 VN_RELE(dvp);
2022         if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
2023                 goto top;
2024         return (error);
2025 }
2026 
2027 /*
2028  * Utility function to compare equality of vnodes.
2029  * Compare the underlying real vnodes, if there are underlying vnodes.
2030  * This is a more thorough comparison than the VN_CMP() macro provides.
2031  */
2032 int
2033 vn_compare(vnode_t *vp1, vnode_t *vp2)
2034 {
2035         vnode_t *realvp;
2036 
2037         if (vp1 != NULL && VOP_REALVP(vp1, &realvp, NULL) == 0)
2038                 vp1 = realvp;
2039         if (vp2 != NULL && VOP_REALVP(vp2, &realvp, NULL) == 0)
2040                 vp2 = realvp;
2041         return (VN_CMP(vp1, vp2));
2042 }
2043 
2044 /*
2045  * The number of locks to hash into.  This value must be a power
2046  * of 2 minus 1 and should probably also be prime.
2047  */
2048 #define NUM_BUCKETS     1023
2049 
2050 struct  vn_vfslocks_bucket {
2051         kmutex_t vb_lock;
2052         vn_vfslocks_entry_t *vb_list;
2053         char pad[64 - sizeof (kmutex_t) - sizeof (void *)];
2054 };
2055 
2056 /*
2057  * Total number of buckets will be NUM_BUCKETS + 1 .
2058  */
2059 
2060 #pragma align   64(vn_vfslocks_buckets)
2061 static  struct vn_vfslocks_bucket       vn_vfslocks_buckets[NUM_BUCKETS + 1];
2062 
2063 #define VN_VFSLOCKS_SHIFT       9
2064 
2065 #define VN_VFSLOCKS_HASH(vfsvpptr)      \
2066         ((((intptr_t)(vfsvpptr)) >> VN_VFSLOCKS_SHIFT) & NUM_BUCKETS)
2067 
2068 /*
2069  * vn_vfslocks_getlock() uses an HASH scheme to generate
2070  * rwstlock using vfs/vnode pointer passed to it.
2071  *
2072  * vn_vfslocks_rele() releases a reference in the
2073  * HASH table which allows the entry allocated by
2074  * vn_vfslocks_getlock() to be freed at a later
2075  * stage when the refcount drops to zero.
2076  */
2077 
2078 vn_vfslocks_entry_t *
2079 vn_vfslocks_getlock(void *vfsvpptr)
2080 {
2081         struct vn_vfslocks_bucket *bp;
2082         vn_vfslocks_entry_t *vep;
2083         vn_vfslocks_entry_t *tvep;
2084 
2085         ASSERT(vfsvpptr != NULL);
2086         bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vfsvpptr)];
2087 
2088         mutex_enter(&bp->vb_lock);
2089         for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) {
2090                 if (vep->ve_vpvfs == vfsvpptr) {
2091                         vep->ve_refcnt++;
2092                         mutex_exit(&bp->vb_lock);
2093                         return (vep);
2094                 }
2095         }
2096         mutex_exit(&bp->vb_lock);
2097         vep = kmem_alloc(sizeof (*vep), KM_SLEEP);
2098         rwst_init(&vep->ve_lock, NULL, RW_DEFAULT, NULL);
2099         vep->ve_vpvfs = (char *)vfsvpptr;
2100         vep->ve_refcnt = 1;
2101         mutex_enter(&bp->vb_lock);
2102         for (tvep = bp->vb_list; tvep != NULL; tvep = tvep->ve_next) {
2103                 if (tvep->ve_vpvfs == vfsvpptr) {
2104                         tvep->ve_refcnt++;
2105                         mutex_exit(&bp->vb_lock);
2106 
2107                         /*
2108                          * There is already an entry in the hash
2109                          * destroy what we just allocated.
2110                          */
2111                         rwst_destroy(&vep->ve_lock);
2112                         kmem_free(vep, sizeof (*vep));
2113                         return (tvep);
2114                 }
2115         }
2116         vep->ve_next = bp->vb_list;
2117         bp->vb_list = vep;
2118         mutex_exit(&bp->vb_lock);
2119         return (vep);
2120 }
2121 
2122 void
2123 vn_vfslocks_rele(vn_vfslocks_entry_t *vepent)
2124 {
2125         struct vn_vfslocks_bucket *bp;
2126         vn_vfslocks_entry_t *vep;
2127         vn_vfslocks_entry_t *pvep;
2128 
2129         ASSERT(vepent != NULL);
2130         ASSERT(vepent->ve_vpvfs != NULL);
2131 
2132         bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vepent->ve_vpvfs)];
2133 
2134         mutex_enter(&bp->vb_lock);
2135         vepent->ve_refcnt--;
2136 
2137         if ((int32_t)vepent->ve_refcnt < 0)
2138                 cmn_err(CE_PANIC, "vn_vfslocks_rele: refcount negative");
2139 
2140         pvep = NULL;
2141         if (vepent->ve_refcnt == 0) {
2142                 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) {
2143                         if (vep->ve_vpvfs == vepent->ve_vpvfs) {
2144                                 if (pvep == NULL)
2145                                         bp->vb_list = vep->ve_next;
2146                                 else {
2147                                         pvep->ve_next = vep->ve_next;
2148                                 }
2149                                 mutex_exit(&bp->vb_lock);
2150                                 rwst_destroy(&vep->ve_lock);
2151                                 kmem_free(vep, sizeof (*vep));
2152                                 return;
2153                         }
2154                         pvep = vep;
2155                 }
2156                 cmn_err(CE_PANIC, "vn_vfslocks_rele: vp/vfs not found");
2157         }
2158         mutex_exit(&bp->vb_lock);
2159 }
2160 
2161 /*
2162  * vn_vfswlock_wait is used to implement a lock which is logically a writers
2163  * lock protecting the v_vfsmountedhere field.
2164  * vn_vfswlock_wait has been modified to be similar to vn_vfswlock,
2165  * except that it blocks to acquire the lock VVFSLOCK.
2166  *
2167  * traverse() and routines re-implementing part of traverse (e.g. autofs)
2168  * need to hold this lock. mount(), vn_rename(), vn_remove() and so on
2169  * need the non-blocking version of the writers lock i.e. vn_vfswlock
2170  */
2171 int
2172 vn_vfswlock_wait(vnode_t *vp)
2173 {
2174         int retval;
2175         vn_vfslocks_entry_t *vpvfsentry;
2176         ASSERT(vp != NULL);
2177 
2178         vpvfsentry = vn_vfslocks_getlock(vp);
2179         retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_WRITER);
2180 
2181         if (retval == EINTR) {
2182                 vn_vfslocks_rele(vpvfsentry);
2183                 return (EINTR);
2184         }
2185         return (retval);
2186 }
2187 
2188 int
2189 vn_vfsrlock_wait(vnode_t *vp)
2190 {
2191         int retval;
2192         vn_vfslocks_entry_t *vpvfsentry;
2193         ASSERT(vp != NULL);
2194 
2195         vpvfsentry = vn_vfslocks_getlock(vp);
2196         retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_READER);
2197 
2198         if (retval == EINTR) {
2199                 vn_vfslocks_rele(vpvfsentry);
2200                 return (EINTR);
2201         }
2202 
2203         return (retval);
2204 }
2205 
2206 
2207 /*
2208  * vn_vfswlock is used to implement a lock which is logically a writers lock
2209  * protecting the v_vfsmountedhere field.
2210  */
2211 int
2212 vn_vfswlock(vnode_t *vp)
2213 {
2214         vn_vfslocks_entry_t *vpvfsentry;
2215 
2216         /*
2217          * If vp is NULL then somebody is trying to lock the covered vnode
2218          * of /.  (vfs_vnodecovered is NULL for /).  This situation will
2219          * only happen when unmounting /.  Since that operation will fail
2220          * anyway, return EBUSY here instead of in VFS_UNMOUNT.
2221          */
2222         if (vp == NULL)
2223                 return (EBUSY);
2224 
2225         vpvfsentry = vn_vfslocks_getlock(vp);
2226 
2227         if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
2228                 return (0);
2229 
2230         vn_vfslocks_rele(vpvfsentry);
2231         return (EBUSY);
2232 }
2233 
2234 int
2235 vn_vfsrlock(vnode_t *vp)
2236 {
2237         vn_vfslocks_entry_t *vpvfsentry;
2238 
2239         /*
2240          * If vp is NULL then somebody is trying to lock the covered vnode
2241          * of /.  (vfs_vnodecovered is NULL for /).  This situation will
2242          * only happen when unmounting /.  Since that operation will fail
2243          * anyway, return EBUSY here instead of in VFS_UNMOUNT.
2244          */
2245         if (vp == NULL)
2246                 return (EBUSY);
2247 
2248         vpvfsentry = vn_vfslocks_getlock(vp);
2249 
2250         if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
2251                 return (0);
2252 
2253         vn_vfslocks_rele(vpvfsentry);
2254         return (EBUSY);
2255 }
2256 
2257 void
2258 vn_vfsunlock(vnode_t *vp)
2259 {
2260         vn_vfslocks_entry_t *vpvfsentry;
2261 
2262         /*
2263          * ve_refcnt needs to be decremented twice.
2264          * 1. To release refernce after a call to vn_vfslocks_getlock()
2265          * 2. To release the reference from the locking routines like
2266          *    vn_vfsrlock/vn_vfswlock etc,.
2267          */
2268         vpvfsentry = vn_vfslocks_getlock(vp);
2269         vn_vfslocks_rele(vpvfsentry);
2270 
2271         rwst_exit(&vpvfsentry->ve_lock);
2272         vn_vfslocks_rele(vpvfsentry);
2273 }
2274 
2275 int
2276 vn_vfswlock_held(vnode_t *vp)
2277 {
2278         int held;
2279         vn_vfslocks_entry_t *vpvfsentry;
2280 
2281         ASSERT(vp != NULL);
2282 
2283         vpvfsentry = vn_vfslocks_getlock(vp);
2284         held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
2285 
2286         vn_vfslocks_rele(vpvfsentry);
2287         return (held);
2288 }
2289 
2290 
2291 int
2292 vn_make_ops(
2293         const char *name,                       /* Name of file system */
2294         const fs_operation_def_t *templ,        /* Operation specification */
2295         vnodeops_t **actual)                    /* Return the vnodeops */
2296 {
2297         int unused_ops;
2298         int error;
2299 
2300         *actual = (vnodeops_t *)kmem_alloc(sizeof (vnodeops_t), KM_SLEEP);
2301 
2302         (*actual)->vnop_name = name;
2303 
2304         error = fs_build_vector(*actual, &unused_ops, vn_ops_table, templ);
2305         if (error) {
2306                 kmem_free(*actual, sizeof (vnodeops_t));
2307         }
2308 
2309 #if DEBUG
2310         if (unused_ops != 0)
2311                 cmn_err(CE_WARN, "vn_make_ops: %s: %d operations supplied "
2312                     "but not used", name, unused_ops);
2313 #endif
2314 
2315         return (error);
2316 }
2317 
2318 /*
2319  * Free the vnodeops created as a result of vn_make_ops()
2320  */
2321 void
2322 vn_freevnodeops(vnodeops_t *vnops)
2323 {
2324         kmem_free(vnops, sizeof (vnodeops_t));
2325 }
2326 
2327 /*
2328  * Vnode cache.
2329  */
2330 
2331 /* ARGSUSED */
2332 static int
2333 vn_cache_constructor(void *buf, void *cdrarg, int kmflags)
2334 {
2335         struct vnode *vp;
2336 
2337         vp = buf;
2338 
2339         mutex_init(&vp->v_lock, NULL, MUTEX_DEFAULT, NULL);
2340         mutex_init(&vp->v_vsd_lock, NULL, MUTEX_DEFAULT, NULL);
2341         cv_init(&vp->v_cv, NULL, CV_DEFAULT, NULL);
2342         rw_init(&vp->v_nbllock, NULL, RW_DEFAULT, NULL);
2343         vp->v_femhead = NULL;        /* Must be done before vn_reinit() */
2344         vp->v_path = vn_vpath_empty;
2345         vp->v_path_stamp = 0;
2346         vp->v_mpssdata = NULL;
2347         vp->v_vsd = NULL;
2348         vp->v_fopdata = NULL;
2349 
2350         return (0);
2351 }
2352 
2353 /* ARGSUSED */
2354 static void
2355 vn_cache_destructor(void *buf, void *cdrarg)
2356 {
2357         struct vnode *vp;
2358 
2359         vp = buf;
2360 
2361         rw_destroy(&vp->v_nbllock);
2362         cv_destroy(&vp->v_cv);
2363         mutex_destroy(&vp->v_vsd_lock);
2364         mutex_destroy(&vp->v_lock);
2365 }
2366 
2367 void
2368 vn_create_cache(void)
2369 {
2370         /* LINTED */
2371         ASSERT((1 << VNODE_ALIGN_LOG2) ==
2372             P2ROUNDUP(sizeof (struct vnode), VNODE_ALIGN));
2373         vn_cache = kmem_cache_create("vn_cache", sizeof (struct vnode),
2374             VNODE_ALIGN, vn_cache_constructor, vn_cache_destructor, NULL, NULL,
2375             NULL, 0);
2376 }
2377 
2378 void
2379 vn_destroy_cache(void)
2380 {
2381         kmem_cache_destroy(vn_cache);
2382 }
2383 
2384 /*
2385  * Used by file systems when fs-specific nodes (e.g., ufs inodes) are
2386  * cached by the file system and vnodes remain associated.
2387  */
2388 void
2389 vn_recycle(vnode_t *vp)
2390 {
2391         ASSERT(vp->v_pages == NULL);
2392         VERIFY(vp->v_path != NULL);
2393 
2394         /*
2395          * XXX - This really belongs in vn_reinit(), but we have some issues
2396          * with the counts.  Best to have it here for clean initialization.
2397          */
2398         vp->v_rdcnt = 0;
2399         vp->v_wrcnt = 0;
2400         vp->v_mmap_read = 0;
2401         vp->v_mmap_write = 0;
2402 
2403         /*
2404          * If FEM was in use, make sure everything gets cleaned up
2405          * NOTE: vp->v_femhead is initialized to NULL in the vnode
2406          * constructor.
2407          */
2408         if (vp->v_femhead) {
2409                 /* XXX - There should be a free_femhead() that does all this */
2410                 ASSERT(vp->v_femhead->femh_list == NULL);
2411                 mutex_destroy(&vp->v_femhead->femh_lock);
2412                 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead)));
2413                 vp->v_femhead = NULL;
2414         }
2415         if (vp->v_path != vn_vpath_empty) {
2416                 kmem_free(vp->v_path, strlen(vp->v_path) + 1);
2417                 vp->v_path = vn_vpath_empty;
2418         }
2419         vp->v_path_stamp = 0;
2420 
2421         if (vp->v_fopdata != NULL) {
2422                 free_fopdata(vp);
2423         }
2424         vp->v_mpssdata = NULL;
2425         vsd_free(vp);
2426 }
2427 
2428 /*
2429  * Used to reset the vnode fields including those that are directly accessible
2430  * as well as those which require an accessor function.
2431  *
2432  * Does not initialize:
2433  *      synchronization objects: v_lock, v_vsd_lock, v_nbllock, v_cv
2434  *      v_data (since FS-nodes and vnodes point to each other and should
2435  *              be updated simultaneously)
2436  *      v_op (in case someone needs to make a VOP call on this object)
2437  */
2438 void
2439 vn_reinit(vnode_t *vp)
2440 {
2441         vp->v_count = 1;
2442         vp->v_count_dnlc = 0;
2443         vp->v_vfsp = NULL;
2444         vp->v_stream = NULL;
2445         vp->v_vfsmountedhere = NULL;
2446         vp->v_flag = 0;
2447         vp->v_type = VNON;
2448         vp->v_rdev = NODEV;
2449 
2450         vp->v_filocks = NULL;
2451         vp->v_shrlocks = NULL;
2452         vp->v_pages = NULL;
2453 
2454         vp->v_locality = NULL;
2455         vp->v_xattrdir = NULL;
2456 
2457         /*
2458          * In a few specific instances, vn_reinit() is used to initialize
2459          * locally defined vnode_t instances.  Lacking the construction offered
2460          * by vn_alloc(), these vnodes require v_path initialization.
2461          */
2462         if (vp->v_path == NULL) {
2463                 vp->v_path = vn_vpath_empty;
2464         }
2465 
2466         /* Handles v_femhead, v_path, and the r/w/map counts */
2467         vn_recycle(vp);
2468 }
2469 
2470 vnode_t *
2471 vn_alloc(int kmflag)
2472 {
2473         vnode_t *vp;
2474 
2475         vp = kmem_cache_alloc(vn_cache, kmflag);
2476 
2477         if (vp != NULL) {
2478                 vp->v_femhead = NULL;        /* Must be done before vn_reinit() */
2479                 vp->v_fopdata = NULL;
2480                 vn_reinit(vp);
2481         }
2482 
2483         return (vp);
2484 }
2485 
2486 void
2487 vn_free(vnode_t *vp)
2488 {
2489         ASSERT(vp->v_shrlocks == NULL);
2490         ASSERT(vp->v_filocks == NULL);
2491 
2492         /*
2493          * Some file systems call vn_free() with v_count of zero,
2494          * some with v_count of 1.  In any case, the value should
2495          * never be anything else.
2496          */
2497         ASSERT((vp->v_count == 0) || (vp->v_count == 1));
2498         ASSERT(vp->v_count_dnlc == 0);
2499         VERIFY(vp->v_path != NULL);
2500         if (vp->v_path != vn_vpath_empty) {
2501                 kmem_free(vp->v_path, strlen(vp->v_path) + 1);
2502                 vp->v_path = vn_vpath_empty;
2503         }
2504 
2505         /* If FEM was in use, make sure everything gets cleaned up */
2506         if (vp->v_femhead) {
2507                 /* XXX - There should be a free_femhead() that does all this */
2508                 ASSERT(vp->v_femhead->femh_list == NULL);
2509                 mutex_destroy(&vp->v_femhead->femh_lock);
2510                 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead)));
2511                 vp->v_femhead = NULL;
2512         }
2513 
2514         if (vp->v_fopdata != NULL) {
2515                 free_fopdata(vp);
2516         }
2517         vp->v_mpssdata = NULL;
2518         vsd_free(vp);
2519         kmem_cache_free(vn_cache, vp);
2520 }
2521 
2522 /*
2523  * vnode status changes, should define better states than 1, 0.
2524  */
2525 void
2526 vn_reclaim(vnode_t *vp)
2527 {
2528         vfs_t   *vfsp = vp->v_vfsp;
2529 
2530         if (vfsp == NULL ||
2531             vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
2532                 return;
2533         }
2534         (void) VFS_VNSTATE(vfsp, vp, VNTRANS_RECLAIMED);
2535 }
2536 
2537 void
2538 vn_idle(vnode_t *vp)
2539 {
2540         vfs_t   *vfsp = vp->v_vfsp;
2541 
2542         if (vfsp == NULL ||
2543             vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
2544                 return;
2545         }
2546         (void) VFS_VNSTATE(vfsp, vp, VNTRANS_IDLED);
2547 }
2548 void
2549 vn_exists(vnode_t *vp)
2550 {
2551         vfs_t   *vfsp = vp->v_vfsp;
2552 
2553         if (vfsp == NULL ||
2554             vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
2555                 return;
2556         }
2557         (void) VFS_VNSTATE(vfsp, vp, VNTRANS_EXISTS);
2558 }
2559 
2560 void
2561 vn_invalid(vnode_t *vp)
2562 {
2563         vfs_t   *vfsp = vp->v_vfsp;
2564 
2565         if (vfsp == NULL ||
2566             vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
2567                 return;
2568         }
2569         (void) VFS_VNSTATE(vfsp, vp, VNTRANS_DESTROYED);
2570 }
2571 
2572 /* Vnode event notification */
2573 
2574 int
2575 vnevent_support(vnode_t *vp, caller_context_t *ct)
2576 {
2577         if (vp == NULL)
2578                 return (EINVAL);
2579 
2580         return (VOP_VNEVENT(vp, VE_SUPPORT, NULL, NULL, ct));
2581 }
2582 
2583 void
2584 vnevent_rename_src(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct)
2585 {
2586         if (vp == NULL || vp->v_femhead == NULL) {
2587                 return;
2588         }
2589         (void) VOP_VNEVENT(vp, VE_RENAME_SRC, dvp, name, ct);
2590 }
2591 
2592 void
2593 vnevent_rename_dest(vnode_t *vp, vnode_t *dvp, char *name,
2594     caller_context_t *ct)
2595 {
2596         if (vp == NULL || vp->v_femhead == NULL) {
2597                 return;
2598         }
2599         (void) VOP_VNEVENT(vp, VE_RENAME_DEST, dvp, name, ct);
2600 }
2601 
2602 void
2603 vnevent_rename_dest_dir(vnode_t *vp, caller_context_t *ct)
2604 {
2605         if (vp == NULL || vp->v_femhead == NULL) {
2606                 return;
2607         }
2608         (void) VOP_VNEVENT(vp, VE_RENAME_DEST_DIR, NULL, NULL, ct);
2609 }
2610 
2611 void
2612 vnevent_remove(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct)
2613 {
2614         if (vp == NULL || vp->v_femhead == NULL) {
2615                 return;
2616         }
2617         (void) VOP_VNEVENT(vp, VE_REMOVE, dvp, name, ct);
2618 }
2619 
2620 void
2621 vnevent_rmdir(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct)
2622 {
2623         if (vp == NULL || vp->v_femhead == NULL) {
2624                 return;
2625         }
2626         (void) VOP_VNEVENT(vp, VE_RMDIR, dvp, name, ct);
2627 }
2628 
2629 void
2630 vnevent_pre_rename_src(vnode_t *vp, vnode_t *dvp, char *name,
2631     caller_context_t *ct)
2632 {
2633         if (vp == NULL || vp->v_femhead == NULL) {
2634                 return;
2635         }
2636         (void) VOP_VNEVENT(vp, VE_PRE_RENAME_SRC, dvp, name, ct);
2637 }
2638 
2639 void
2640 vnevent_pre_rename_dest(vnode_t *vp, vnode_t *dvp, char *name,
2641     caller_context_t *ct)
2642 {
2643         if (vp == NULL || vp->v_femhead == NULL) {
2644                 return;
2645         }
2646         (void) VOP_VNEVENT(vp, VE_PRE_RENAME_DEST, dvp, name, ct);
2647 }
2648 
2649 void
2650 vnevent_pre_rename_dest_dir(vnode_t *vp, vnode_t *nvp, char *name,
2651     caller_context_t *ct)
2652 {
2653         if (vp == NULL || vp->v_femhead == NULL) {
2654                 return;
2655         }
2656         (void) VOP_VNEVENT(vp, VE_PRE_RENAME_DEST_DIR, nvp, name, ct);
2657 }
2658 
2659 void
2660 vnevent_create(vnode_t *vp, caller_context_t *ct)
2661 {
2662         if (vp == NULL || vp->v_femhead == NULL) {
2663                 return;
2664         }
2665         (void) VOP_VNEVENT(vp, VE_CREATE, NULL, NULL, ct);
2666 }
2667 
2668 void
2669 vnevent_link(vnode_t *vp, caller_context_t *ct)
2670 {
2671         if (vp == NULL || vp->v_femhead == NULL) {
2672                 return;
2673         }
2674         (void) VOP_VNEVENT(vp, VE_LINK, NULL, NULL, ct);
2675 }
2676 
2677 void
2678 vnevent_mountedover(vnode_t *vp, caller_context_t *ct)
2679 {
2680         if (vp == NULL || vp->v_femhead == NULL) {
2681                 return;
2682         }
2683         (void) VOP_VNEVENT(vp, VE_MOUNTEDOVER, NULL, NULL, ct);
2684 }
2685 
2686 void
2687 vnevent_truncate(vnode_t *vp, caller_context_t *ct)
2688 {
2689         if (vp == NULL || vp->v_femhead == NULL) {
2690                 return;
2691         }
2692         (void) VOP_VNEVENT(vp, VE_TRUNCATE, NULL, NULL, ct);
2693 }
2694 
2695 /*
2696  * Vnode accessors.
2697  */
2698 
2699 int
2700 vn_is_readonly(vnode_t *vp)
2701 {
2702         return (vp->v_vfsp->vfs_flag & VFS_RDONLY);
2703 }
2704 
2705 int
2706 vn_has_flocks(vnode_t *vp)
2707 {
2708         return (vp->v_filocks != NULL);
2709 }
2710 
2711 int
2712 vn_has_mandatory_locks(vnode_t *vp, int mode)
2713 {
2714         return ((vp->v_filocks != NULL) && (MANDLOCK(vp, mode)));
2715 }
2716 
2717 int
2718 vn_has_cached_data(vnode_t *vp)
2719 {
2720         return (vp->v_pages != NULL);
2721 }
2722 
2723 /*
2724  * Return 0 if the vnode in question shouldn't be permitted into a zone via
2725  * zone_enter(2).
2726  */
2727 int
2728 vn_can_change_zones(vnode_t *vp)
2729 {
2730         struct vfssw *vswp;
2731         int allow = 1;
2732         vnode_t *rvp;
2733 
2734         if (nfs_global_client_only != 0)
2735                 return (1);
2736 
2737         /*
2738          * We always want to look at the underlying vnode if there is one.
2739          */
2740         if (VOP_REALVP(vp, &rvp, NULL) != 0)
2741                 rvp = vp;
2742         /*
2743          * Some pseudo filesystems (including doorfs) don't actually register
2744          * their vfsops_t, so the following may return NULL; we happily let
2745          * such vnodes switch zones.
2746          */
2747         vswp = vfs_getvfsswbyvfsops(vfs_getops(rvp->v_vfsp));
2748         if (vswp != NULL) {
2749                 if (vswp->vsw_flag & VSW_NOTZONESAFE)
2750                         allow = 0;
2751                 vfs_unrefvfssw(vswp);
2752         }
2753         return (allow);
2754 }
2755 
2756 /*
2757  * Return nonzero if the vnode is a mount point, zero if not.
2758  */
2759 int
2760 vn_ismntpt(vnode_t *vp)
2761 {
2762         return (vp->v_vfsmountedhere != NULL);
2763 }
2764 
2765 /* Retrieve the vfs (if any) mounted on this vnode */
2766 vfs_t *
2767 vn_mountedvfs(vnode_t *vp)
2768 {
2769         return (vp->v_vfsmountedhere);
2770 }
2771 
2772 /*
2773  * Return nonzero if the vnode is referenced by the dnlc, zero if not.
2774  */
2775 int
2776 vn_in_dnlc(vnode_t *vp)
2777 {
2778         return (vp->v_count_dnlc > 0);
2779 }
2780 
2781 /*
2782  * vn_has_other_opens() checks whether a particular file is opened by more than
2783  * just the caller and whether the open is for read and/or write.
2784  * This routine is for calling after the caller has already called VOP_OPEN()
2785  * and the caller wishes to know if they are the only one with it open for
2786  * the mode(s) specified.
2787  *
2788  * Vnode counts are only kept on regular files (v_type=VREG).
2789  */
2790 int
2791 vn_has_other_opens(
2792         vnode_t *vp,
2793         v_mode_t mode)
2794 {
2795 
2796         ASSERT(vp != NULL);
2797 
2798         switch (mode) {
2799         case V_WRITE:
2800                 if (vp->v_wrcnt > 1)
2801                         return (V_TRUE);
2802                 break;
2803         case V_RDORWR:
2804                 if ((vp->v_rdcnt > 1) || (vp->v_wrcnt > 1))
2805                         return (V_TRUE);
2806                 break;
2807         case V_RDANDWR:
2808                 if ((vp->v_rdcnt > 1) && (vp->v_wrcnt > 1))
2809                         return (V_TRUE);
2810                 break;
2811         case V_READ:
2812                 if (vp->v_rdcnt > 1)
2813                         return (V_TRUE);
2814                 break;
2815         }
2816 
2817         return (V_FALSE);
2818 }
2819 
2820 /*
2821  * vn_is_opened() checks whether a particular file is opened and
2822  * whether the open is for read and/or write.
2823  *
2824  * Vnode counts are only kept on regular files (v_type=VREG).
2825  */
2826 int
2827 vn_is_opened(
2828         vnode_t *vp,
2829         v_mode_t mode)
2830 {
2831 
2832         ASSERT(vp != NULL);
2833 
2834         switch (mode) {
2835         case V_WRITE:
2836                 if (vp->v_wrcnt)
2837                         return (V_TRUE);
2838                 break;
2839         case V_RDANDWR:
2840                 if (vp->v_rdcnt && vp->v_wrcnt)
2841                         return (V_TRUE);
2842                 break;
2843         case V_RDORWR:
2844                 if (vp->v_rdcnt || vp->v_wrcnt)
2845                         return (V_TRUE);
2846                 break;
2847         case V_READ:
2848                 if (vp->v_rdcnt)
2849                         return (V_TRUE);
2850                 break;
2851         }
2852 
2853         return (V_FALSE);
2854 }
2855 
2856 /*
2857  * vn_is_mapped() checks whether a particular file is mapped and whether
2858  * the file is mapped read and/or write.
2859  */
2860 int
2861 vn_is_mapped(
2862         vnode_t *vp,
2863         v_mode_t mode)
2864 {
2865 
2866         ASSERT(vp != NULL);
2867 
2868 #if !defined(_LP64)
2869         switch (mode) {
2870         /*
2871          * The atomic_add_64_nv functions force atomicity in the
2872          * case of 32 bit architectures. Otherwise the 64 bit values
2873          * require two fetches. The value of the fields may be
2874          * (potentially) changed between the first fetch and the
2875          * second
2876          */
2877         case V_WRITE:
2878                 if (atomic_add_64_nv((&(vp->v_mmap_write)), 0))
2879                         return (V_TRUE);
2880                 break;
2881         case V_RDANDWR:
2882                 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) &&
2883                     (atomic_add_64_nv((&(vp->v_mmap_write)), 0)))
2884                         return (V_TRUE);
2885                 break;
2886         case V_RDORWR:
2887                 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) ||
2888                     (atomic_add_64_nv((&(vp->v_mmap_write)), 0)))
2889                         return (V_TRUE);
2890                 break;
2891         case V_READ:
2892                 if (atomic_add_64_nv((&(vp->v_mmap_read)), 0))
2893                         return (V_TRUE);
2894                 break;
2895         }
2896 #else
2897         switch (mode) {
2898         case V_WRITE:
2899                 if (vp->v_mmap_write)
2900                         return (V_TRUE);
2901                 break;
2902         case V_RDANDWR:
2903                 if (vp->v_mmap_read && vp->v_mmap_write)
2904                         return (V_TRUE);
2905                 break;
2906         case V_RDORWR:
2907                 if (vp->v_mmap_read || vp->v_mmap_write)
2908                         return (V_TRUE);
2909                 break;
2910         case V_READ:
2911                 if (vp->v_mmap_read)
2912                         return (V_TRUE);
2913                 break;
2914         }
2915 #endif
2916 
2917         return (V_FALSE);
2918 }
2919 
2920 /*
2921  * Set the operations vector for a vnode.
2922  *
2923  * FEM ensures that the v_femhead pointer is filled in before the
2924  * v_op pointer is changed.  This means that if the v_femhead pointer
2925  * is NULL, and the v_op field hasn't changed since before which checked
2926  * the v_femhead pointer; then our update is ok - we are not racing with
2927  * FEM.
2928  */
2929 void
2930 vn_setops(vnode_t *vp, vnodeops_t *vnodeops)
2931 {
2932         vnodeops_t      *op;
2933 
2934         ASSERT(vp != NULL);
2935         ASSERT(vnodeops != NULL);
2936 
2937         op = vp->v_op;
2938         membar_consumer();
2939         /*
2940          * If vp->v_femhead == NULL, then we'll call atomic_cas_ptr() to do
2941          * the compare-and-swap on vp->v_op.  If either fails, then FEM is
2942          * in effect on the vnode and we need to have FEM deal with it.
2943          */
2944         if (vp->v_femhead != NULL || atomic_cas_ptr(&vp->v_op, op, vnodeops) !=
2945             op) {
2946                 fem_setvnops(vp, vnodeops);
2947         }
2948 }
2949 
2950 /*
2951  * Retrieve the operations vector for a vnode
2952  * As with vn_setops(above); make sure we aren't racing with FEM.
2953  * FEM sets the v_op to a special, internal, vnodeops that wouldn't
2954  * make sense to the callers of this routine.
2955  */
2956 vnodeops_t *
2957 vn_getops(vnode_t *vp)
2958 {
2959         vnodeops_t      *op;
2960 
2961         ASSERT(vp != NULL);
2962 
2963         op = vp->v_op;
2964         membar_consumer();
2965         if (vp->v_femhead == NULL && op == vp->v_op) {
2966                 return (op);
2967         } else {
2968                 return (fem_getvnops(vp));
2969         }
2970 }
2971 
2972 /*
2973  * Returns non-zero (1) if the vnodeops matches that of the vnode.
2974  * Returns zero (0) if not.
2975  */
2976 int
2977 vn_matchops(vnode_t *vp, vnodeops_t *vnodeops)
2978 {
2979         return (vn_getops(vp) == vnodeops);
2980 }
2981 
2982 /*
2983  * Returns non-zero (1) if the specified operation matches the
2984  * corresponding operation for that the vnode.
2985  * Returns zero (0) if not.
2986  */
2987 
2988 #define MATCHNAME(n1, n2) (((n1)[0] == (n2)[0]) && (strcmp((n1), (n2)) == 0))
2989 
2990 int
2991 vn_matchopval(vnode_t *vp, char *vopname, fs_generic_func_p funcp)
2992 {
2993         const fs_operation_trans_def_t *otdp;
2994         fs_generic_func_p *loc = NULL;
2995         vnodeops_t      *vop = vn_getops(vp);
2996 
2997         ASSERT(vopname != NULL);
2998 
2999         for (otdp = vn_ops_table; otdp->name != NULL; otdp++) {
3000                 if (MATCHNAME(otdp->name, vopname)) {
3001                         loc = (fs_generic_func_p *)
3002                             ((char *)(vop) + otdp->offset);
3003                         break;
3004                 }
3005         }
3006 
3007         return ((loc != NULL) && (*loc == funcp));
3008 }
3009 
3010 /*
3011  * fs_new_caller_id() needs to return a unique ID on a given local system.
3012  * The IDs do not need to survive across reboots.  These are primarily
3013  * used so that (FEM) monitors can detect particular callers (such as
3014  * the NFS server) to a given vnode/vfs operation.
3015  */
3016 u_longlong_t
3017 fs_new_caller_id()
3018 {
3019         static uint64_t next_caller_id = 0LL; /* First call returns 1 */
3020 
3021         return ((u_longlong_t)atomic_inc_64_nv(&next_caller_id));
3022 }
3023 
3024 /*
3025  * The value stored in v_path is relative to rootdir, located in the global
3026  * zone.  Zones or chroot environments which reside deeper inside the VFS
3027  * hierarchy will have a relative view of MAXPATHLEN since they are unaware of
3028  * what lies below their perceived root.  In order to keep v_path usable for
3029  * these child environments, its allocations are allowed to exceed MAXPATHLEN.
3030  *
3031  * An upper bound of max_vnode_path is placed upon v_path allocations to
3032  * prevent the system from going too wild at the behest of pathological
3033  * behavior from the operator.
3034  */
3035 size_t max_vnode_path = 4 * MAXPATHLEN;
3036 
3037 
3038 void
3039 vn_clearpath(vnode_t *vp, hrtime_t compare_stamp)
3040 {
3041         char *buf;
3042 
3043         mutex_enter(&vp->v_lock);
3044         /*
3045          * If the snapshot of v_path_stamp passed in via compare_stamp does not
3046          * match the present value on the vnode, it indicates that subsequent
3047          * changes have occurred.  The v_path value is not cleared in this case
3048          * since the new value may be valid.
3049          */
3050         if (compare_stamp != 0 && vp->v_path_stamp != compare_stamp) {
3051                 mutex_exit(&vp->v_lock);
3052                 return;
3053         }
3054         buf = vp->v_path;
3055         vp->v_path = vn_vpath_empty;
3056         vp->v_path_stamp = 0;
3057         mutex_exit(&vp->v_lock);
3058         if (buf != vn_vpath_empty) {
3059                 kmem_free(buf, strlen(buf) + 1);
3060         }
3061 }
3062 
3063 static void
3064 vn_setpath_common(vnode_t *pvp, vnode_t *vp, const char *name, size_t len,
3065     boolean_t is_rename)
3066 {
3067         char *buf, *oldbuf;
3068         hrtime_t pstamp;
3069         size_t baselen, buflen = 0;
3070 
3071         /* Handle the vn_setpath_str case. */
3072         if (pvp == NULL) {
3073                 if (len + 1 > max_vnode_path) {
3074                         DTRACE_PROBE4(vn__setpath__too__long, vnode_t *, pvp,
3075                             vnode_t *, vp, char *, name, size_t, len + 1);
3076                         return;
3077                 }
3078                 buf = kmem_alloc(len + 1, KM_SLEEP);
3079                 bcopy(name, buf, len);
3080                 buf[len] = '\0';
3081 
3082                 mutex_enter(&vp->v_lock);
3083                 oldbuf = vp->v_path;
3084                 vp->v_path = buf;
3085                 vp->v_path_stamp = gethrtime();
3086                 mutex_exit(&vp->v_lock);
3087                 if (oldbuf != vn_vpath_empty) {
3088                         kmem_free(oldbuf, strlen(oldbuf) + 1);
3089                 }
3090                 return;
3091         }
3092 
3093         /* Take snapshot of parent dir */
3094         mutex_enter(&pvp->v_lock);
3095 
3096         if ((pvp->v_flag & VTRAVERSE) != 0) {
3097                 /*
3098                  * When the parent vnode has VTRAVERSE set in its flags, normal
3099                  * assumptions about v_path calculation no longer apply.  The
3100                  * primary situation where this occurs is via the VFS tricks
3101                  * which procfs plays in order to allow /proc/PID/(root|cwd) to
3102                  * yield meaningful results.
3103                  *
3104                  * When this flag is set, v_path on the child must not be
3105                  * updated since the calculated value is likely to be
3106                  * incorrect, given the current context.
3107                  */
3108                 mutex_exit(&pvp->v_lock);
3109                 return;
3110         }
3111 
3112 retrybuf:
3113         if (pvp->v_path == vn_vpath_empty) {
3114                 /*
3115                  * Without v_path from the parent directory, generating a child
3116                  * path from the name is impossible.
3117                  */
3118                 if (len > 0) {
3119                         pstamp = pvp->v_path_stamp;
3120                         mutex_exit(&pvp->v_lock);
3121                         vn_clearpath(vp, pstamp);
3122                         return;
3123                 }
3124 
3125                 /*
3126                  * The only feasible case here is where a NUL lookup is being
3127                  * performed on rootdir prior to its v_path being populated.
3128                  */
3129                 ASSERT(pvp->v_path_stamp == 0);
3130                 baselen = 0;
3131                 pstamp = 0;
3132         } else {
3133                 pstamp = pvp->v_path_stamp;
3134                 baselen = strlen(pvp->v_path);
3135                 /* ignore a trailing slash if present */
3136                 if (pvp->v_path[baselen - 1] == '/') {
3137                         /* This should only the be case for rootdir */
3138                         ASSERT(baselen == 1 && pvp == rootdir);
3139                         baselen--;
3140                 }
3141         }
3142         mutex_exit(&pvp->v_lock);
3143 
3144         if (buflen != 0) {
3145                 /* Free the existing (mis-sized) buffer in case of retry */
3146                 kmem_free(buf, buflen);
3147         }
3148         /* base, '/', name and trailing NUL */
3149         buflen = baselen + len + 2;
3150         if (buflen > max_vnode_path) {
3151                 DTRACE_PROBE4(vn__setpath_too__long, vnode_t *, pvp,
3152                     vnode_t *, vp, char *, name, size_t, buflen);
3153                 return;
3154         }
3155         buf = kmem_alloc(buflen, KM_SLEEP);
3156 
3157         mutex_enter(&pvp->v_lock);
3158         if (pvp->v_path_stamp != pstamp) {
3159                 size_t vlen;
3160 
3161                 /*
3162                  * Since v_path_stamp changed on the parent, it is likely that
3163                  * v_path has been altered as well.  If the length does not
3164                  * exactly match what was previously measured, the buffer
3165                  * allocation must be repeated for proper sizing.
3166                  */
3167                 if (pvp->v_path == vn_vpath_empty) {
3168                         /* Give up if parent lack v_path */
3169                         mutex_exit(&pvp->v_lock);
3170                         kmem_free(buf, buflen);
3171                         return;
3172                 }
3173                 vlen = strlen(pvp->v_path);
3174                 if (pvp->v_path[vlen - 1] == '/') {
3175                         vlen--;
3176                 }
3177                 if (vlen != baselen) {
3178                         goto retrybuf;
3179                 }
3180         }
3181         bcopy(pvp->v_path, buf, baselen);
3182         mutex_exit(&pvp->v_lock);
3183 
3184         buf[baselen] = '/';
3185         baselen++;
3186         bcopy(name, &buf[baselen], len + 1);
3187 
3188         mutex_enter(&vp->v_lock);
3189         if (vp->v_path_stamp == 0) {
3190                 /* never-visited vnode can inherit stamp from parent */
3191                 ASSERT(vp->v_path == vn_vpath_empty);
3192                 vp->v_path_stamp = pstamp;
3193                 vp->v_path = buf;
3194                 mutex_exit(&vp->v_lock);
3195         } else if (vp->v_path_stamp < pstamp || is_rename) {
3196                 /*
3197                  * Install the updated path and stamp, ensuring that the v_path
3198                  * pointer is valid at all times for dtrace.
3199                  */
3200                 oldbuf = vp->v_path;
3201                 vp->v_path = buf;
3202                 vp->v_path_stamp = gethrtime();
3203                 mutex_exit(&vp->v_lock);
3204                 kmem_free(oldbuf, strlen(oldbuf) + 1);
3205         } else {
3206                 /*
3207                  * If the timestamp matches or is greater, it means another
3208                  * thread performed the update first while locks were dropped
3209                  * here to make the allocation.  We defer to the newer value.
3210                  */
3211                 mutex_exit(&vp->v_lock);
3212                 kmem_free(buf, buflen);
3213         }
3214         ASSERT(MUTEX_NOT_HELD(&vp->v_lock));
3215 }
3216 
3217 void
3218 vn_updatepath(vnode_t *pvp, vnode_t *vp, const char *name)
3219 {
3220         size_t len;
3221 
3222         /*
3223          * If the parent is older or empty, there's nothing further to do.
3224          */
3225         if (pvp->v_path == vn_vpath_empty ||
3226             pvp->v_path_stamp <= vp->v_path_stamp) {
3227                 return;
3228         }
3229 
3230         /*
3231          * Given the lack of appropriate context, meaningful updates to v_path
3232          * cannot be made for during lookups for the '.' or '..' entries.
3233          */
3234         len = strlen(name);
3235         if (len == 0 || (len == 1 && name[0] == '.') ||
3236             (len == 2 && name[0] == '.' && name[1] == '.')) {
3237                 return;
3238         }
3239 
3240         vn_setpath_common(pvp, vp, name, len, B_FALSE);
3241 }
3242 
3243 /*
3244  * Given a starting vnode and a path, updates the path in the target vnode in
3245  * a safe manner.  If the vnode already has path information embedded, then the
3246  * cached path is left untouched.
3247  */
3248 /* ARGSUSED */
3249 void
3250 vn_setpath(vnode_t *rootvp, vnode_t *pvp, vnode_t *vp, const char *name,
3251     size_t len)
3252 {
3253         vn_setpath_common(pvp, vp, name, len, B_FALSE);
3254 }
3255 
3256 /*
3257  * Sets the path to the vnode to be the given string, regardless of current
3258  * context.  The string must be a complete path from rootdir.  This is only used
3259  * by fsop_root() for setting the path based on the mountpoint.
3260  */
3261 void
3262 vn_setpath_str(vnode_t *vp, const char *str, size_t len)
3263 {
3264         vn_setpath_common(NULL, vp, str, len, B_FALSE);
3265 }
3266 
3267 /*
3268  * Called from within filesystem's vop_rename() to handle renames once the
3269  * target vnode is available.
3270  */
3271 void
3272 vn_renamepath(vnode_t *pvp, vnode_t *vp, const char *name, size_t len)
3273 {
3274         vn_setpath_common(pvp, vp, name, len, B_TRUE);
3275 }
3276 
3277 /*
3278  * Similar to vn_setpath_str(), this function sets the path of the destination
3279  * vnode to the be the same as the source vnode.
3280  */
3281 void
3282 vn_copypath(struct vnode *src, struct vnode *dst)
3283 {
3284         char *buf;
3285         hrtime_t stamp;
3286         size_t buflen;
3287 
3288         mutex_enter(&src->v_lock);
3289         if (src->v_path == vn_vpath_empty) {
3290                 mutex_exit(&src->v_lock);
3291                 return;
3292         }
3293         buflen = strlen(src->v_path) + 1;
3294         mutex_exit(&src->v_lock);
3295 
3296         buf = kmem_alloc(buflen, KM_SLEEP);
3297 
3298         mutex_enter(&src->v_lock);
3299         if (src->v_path == vn_vpath_empty ||
3300             strlen(src->v_path) + 1 != buflen) {
3301                 mutex_exit(&src->v_lock);
3302                 kmem_free(buf, buflen);
3303                 return;
3304         }
3305         bcopy(src->v_path, buf, buflen);
3306         stamp = src->v_path_stamp;
3307         mutex_exit(&src->v_lock);
3308 
3309         mutex_enter(&dst->v_lock);
3310         if (dst->v_path != vn_vpath_empty) {
3311                 mutex_exit(&dst->v_lock);
3312                 kmem_free(buf, buflen);
3313                 return;
3314         }
3315         dst->v_path = buf;
3316         dst->v_path_stamp = stamp;
3317         mutex_exit(&dst->v_lock);
3318 }
3319 
3320 
3321 /*
3322  * XXX Private interface for segvn routines that handle vnode
3323  * large page segments.
3324  *
3325  * return 1 if vp's file system VOP_PAGEIO() implementation
3326  * can be safely used instead of VOP_GETPAGE() for handling
3327  * pagefaults against regular non swap files. VOP_PAGEIO()
3328  * interface is considered safe here if its implementation
3329  * is very close to VOP_GETPAGE() implementation.
3330  * e.g. It zero's out the part of the page beyond EOF. Doesn't
3331  * panic if there're file holes but instead returns an error.
3332  * Doesn't assume file won't be changed by user writes, etc.
3333  *
3334  * return 0 otherwise.
3335  *
3336  * For now allow segvn to only use VOP_PAGEIO() with ufs and nfs.
3337  */
3338 int
3339 vn_vmpss_usepageio(vnode_t *vp)
3340 {
3341         vfs_t   *vfsp = vp->v_vfsp;
3342         char *fsname = vfssw[vfsp->vfs_fstype].vsw_name;
3343         char *pageio_ok_fss[] = {"ufs", "nfs", NULL};
3344         char **fsok = pageio_ok_fss;
3345 
3346         if (fsname == NULL) {
3347                 return (0);
3348         }
3349 
3350         for (; *fsok; fsok++) {
3351                 if (strcmp(*fsok, fsname) == 0) {
3352                         return (1);
3353                 }
3354         }
3355         return (0);
3356 }
3357 
3358 /* VOP_XXX() macros call the corresponding fop_xxx() function */
3359 
3360 int
3361 fop_open(
3362         vnode_t **vpp,
3363         int mode,
3364         cred_t *cr,
3365         caller_context_t *ct)
3366 {
3367         int ret;
3368         vnode_t *vp = *vpp;
3369 
3370         VN_HOLD(vp);
3371         /*
3372          * Adding to the vnode counts before calling open
3373          * avoids the need for a mutex. It circumvents a race
3374          * condition where a query made on the vnode counts results in a
3375          * false negative. The inquirer goes away believing the file is
3376          * not open when there is an open on the file already under way.
3377          *
3378          * The counts are meant to prevent NFS from granting a delegation
3379          * when it would be dangerous to do so.
3380          *
3381          * The vnode counts are only kept on regular files
3382          */
3383         if ((*vpp)->v_type == VREG) {
3384                 if (mode & FREAD)
3385                         atomic_inc_32(&(*vpp)->v_rdcnt);
3386                 if (mode & FWRITE)
3387                         atomic_inc_32(&(*vpp)->v_wrcnt);
3388         }
3389 
3390         VOPXID_MAP_CR(vp, cr);
3391 
3392         ret = (*(*(vpp))->v_op->vop_open)(vpp, mode, cr, ct);
3393 
3394         if (ret) {
3395                 /*
3396                  * Use the saved vp just in case the vnode ptr got trashed
3397                  * by the error.
3398                  */
3399                 VOPSTATS_UPDATE(vp, open);
3400                 if ((vp->v_type == VREG) && (mode & FREAD))
3401                         atomic_dec_32(&vp->v_rdcnt);
3402                 if ((vp->v_type == VREG) && (mode & FWRITE))
3403                         atomic_dec_32(&vp->v_wrcnt);
3404         } else {
3405                 /*
3406                  * Some filesystems will return a different vnode,
3407                  * but the same path was still used to open it.
3408                  * So if we do change the vnode and need to
3409                  * copy over the path, do so here, rather than special
3410                  * casing each filesystem. Adjust the vnode counts to
3411                  * reflect the vnode switch.
3412                  */
3413                 VOPSTATS_UPDATE(*vpp, open);
3414                 if (*vpp != vp) {
3415                         vn_copypath(vp, *vpp);
3416                         if (((*vpp)->v_type == VREG) && (mode & FREAD))
3417                                 atomic_inc_32(&(*vpp)->v_rdcnt);
3418                         if ((vp->v_type == VREG) && (mode & FREAD))
3419                                 atomic_dec_32(&vp->v_rdcnt);
3420                         if (((*vpp)->v_type == VREG) && (mode & FWRITE))
3421                                 atomic_inc_32(&(*vpp)->v_wrcnt);
3422                         if ((vp->v_type == VREG) && (mode & FWRITE))
3423                                 atomic_dec_32(&vp->v_wrcnt);
3424                 }
3425         }
3426         VN_RELE(vp);
3427         return (ret);
3428 }
3429 
3430 int
3431 fop_close(
3432         vnode_t *vp,
3433         int flag,
3434         int count,
3435         offset_t offset,
3436         cred_t *cr,
3437         caller_context_t *ct)
3438 {
3439         int err;
3440 
3441         VOPXID_MAP_CR(vp, cr);
3442 
3443         err = (*(vp)->v_op->vop_close)(vp, flag, count, offset, cr, ct);
3444         VOPSTATS_UPDATE(vp, close);
3445         /*
3446          * Check passed in count to handle possible dups. Vnode counts are only
3447          * kept on regular files
3448          */
3449         if ((vp->v_type == VREG) && (count == 1))  {
3450                 if (flag & FREAD) {
3451                         ASSERT(vp->v_rdcnt > 0);
3452                         atomic_dec_32(&vp->v_rdcnt);
3453                 }
3454                 if (flag & FWRITE) {
3455                         ASSERT(vp->v_wrcnt > 0);
3456                         atomic_dec_32(&vp->v_wrcnt);
3457                 }
3458         }
3459         return (err);
3460 }
3461 
3462 int
3463 fop_read(
3464         vnode_t *vp,
3465         uio_t *uiop,
3466         int ioflag,
3467         cred_t *cr,
3468         caller_context_t *ct)
3469 {
3470         int     err;
3471         ssize_t resid_start = uiop->uio_resid;
3472 
3473         VOPXID_MAP_CR(vp, cr);
3474 
3475         err = (*(vp)->v_op->vop_read)(vp, uiop, ioflag, cr, ct);
3476         VOPSTATS_UPDATE_IO(vp, read,
3477             read_bytes, (resid_start - uiop->uio_resid));
3478         return (err);
3479 }
3480 
3481 int
3482 fop_write(
3483         vnode_t *vp,
3484         uio_t *uiop,
3485         int ioflag,
3486         cred_t *cr,
3487         caller_context_t *ct)
3488 {
3489         int     err;
3490         ssize_t resid_start = uiop->uio_resid;
3491 
3492         VOPXID_MAP_CR(vp, cr);
3493 
3494         err = (*(vp)->v_op->vop_write)(vp, uiop, ioflag, cr, ct);
3495         VOPSTATS_UPDATE_IO(vp, write,
3496             write_bytes, (resid_start - uiop->uio_resid));
3497         return (err);
3498 }
3499 
3500 int
3501 fop_ioctl(
3502         vnode_t *vp,
3503         int cmd,
3504         intptr_t arg,
3505         int flag,
3506         cred_t *cr,
3507         int *rvalp,
3508         caller_context_t *ct)
3509 {
3510         int     err;
3511 
3512         VOPXID_MAP_CR(vp, cr);
3513 
3514         err = (*(vp)->v_op->vop_ioctl)(vp, cmd, arg, flag, cr, rvalp, ct);
3515         VOPSTATS_UPDATE(vp, ioctl);
3516         return (err);
3517 }
3518 
3519 int
3520 fop_setfl(
3521         vnode_t *vp,
3522         int oflags,
3523         int nflags,
3524         cred_t *cr,
3525         caller_context_t *ct)
3526 {
3527         int     err;
3528 
3529         VOPXID_MAP_CR(vp, cr);
3530 
3531         err = (*(vp)->v_op->vop_setfl)(vp, oflags, nflags, cr, ct);
3532         VOPSTATS_UPDATE(vp, setfl);
3533         return (err);
3534 }
3535 
3536 int
3537 fop_getattr(
3538         vnode_t *vp,
3539         vattr_t *vap,
3540         int flags,
3541         cred_t *cr,
3542         caller_context_t *ct)
3543 {
3544         int     err;
3545 
3546         VOPXID_MAP_CR(vp, cr);
3547 
3548         /*
3549          * If this file system doesn't understand the xvattr extensions
3550          * then turn off the xvattr bit.
3551          */
3552         if (vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) == 0) {
3553                 vap->va_mask &= ~AT_XVATTR;
3554         }
3555 
3556         /*
3557          * We're only allowed to skip the ACL check iff we used a 32 bit
3558          * ACE mask with VOP_ACCESS() to determine permissions.
3559          */
3560         if ((flags & ATTR_NOACLCHECK) &&
3561             vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
3562                 return (EINVAL);
3563         }
3564         err = (*(vp)->v_op->vop_getattr)(vp, vap, flags, cr, ct);
3565         VOPSTATS_UPDATE(vp, getattr);
3566         return (err);
3567 }
3568 
3569 int
3570 fop_setattr(
3571         vnode_t *vp,
3572         vattr_t *vap,
3573         int flags,
3574         cred_t *cr,
3575         caller_context_t *ct)
3576 {
3577         int     err;
3578 
3579         VOPXID_MAP_CR(vp, cr);
3580 
3581         /*
3582          * If this file system doesn't understand the xvattr extensions
3583          * then turn off the xvattr bit.
3584          */
3585         if (vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) == 0) {
3586                 vap->va_mask &= ~AT_XVATTR;
3587         }
3588 
3589         /*
3590          * We're only allowed to skip the ACL check iff we used a 32 bit
3591          * ACE mask with VOP_ACCESS() to determine permissions.
3592          */
3593         if ((flags & ATTR_NOACLCHECK) &&
3594             vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
3595                 return (EINVAL);
3596         }
3597         err = (*(vp)->v_op->vop_setattr)(vp, vap, flags, cr, ct);
3598         VOPSTATS_UPDATE(vp, setattr);
3599         return (err);
3600 }
3601 
3602 int
3603 fop_access(
3604         vnode_t *vp,
3605         int mode,
3606         int flags,
3607         cred_t *cr,
3608         caller_context_t *ct)
3609 {
3610         int     err;
3611 
3612         if ((flags & V_ACE_MASK) &&
3613             vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
3614                 return (EINVAL);
3615         }
3616 
3617         VOPXID_MAP_CR(vp, cr);
3618 
3619         err = (*(vp)->v_op->vop_access)(vp, mode, flags, cr, ct);
3620         VOPSTATS_UPDATE(vp, access);
3621         return (err);
3622 }
3623 
3624 int
3625 fop_lookup(
3626         vnode_t *dvp,
3627         char *nm,
3628         vnode_t **vpp,
3629         pathname_t *pnp,
3630         int flags,
3631         vnode_t *rdir,
3632         cred_t *cr,
3633         caller_context_t *ct,
3634         int *deflags,           /* Returned per-dirent flags */
3635         pathname_t *ppnp)       /* Returned case-preserved name in directory */
3636 {
3637         int ret;
3638 
3639         /*
3640          * If this file system doesn't support case-insensitive access
3641          * and said access is requested, fail quickly.  It is required
3642          * that if the vfs supports case-insensitive lookup, it also
3643          * supports extended dirent flags.
3644          */
3645         if (flags & FIGNORECASE &&
3646             (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3647             vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3648                 return (EINVAL);
3649 
3650         VOPXID_MAP_CR(dvp, cr);
3651 
3652         if ((flags & LOOKUP_XATTR) && (flags & LOOKUP_HAVE_SYSATTR_DIR) == 0) {
3653                 ret = xattr_dir_lookup(dvp, vpp, flags, cr);
3654         } else {
3655                 ret = (*(dvp)->v_op->vop_lookup)
3656                     (dvp, nm, vpp, pnp, flags, rdir, cr, ct, deflags, ppnp);
3657         }
3658         if (ret == 0 && *vpp) {
3659                 VOPSTATS_UPDATE(*vpp, lookup);
3660                 vn_updatepath(dvp, *vpp, nm);
3661         }
3662 
3663         return (ret);
3664 }
3665 
3666 int
3667 fop_create(
3668         vnode_t *dvp,
3669         char *name,
3670         vattr_t *vap,
3671         vcexcl_t excl,
3672         int mode,
3673         vnode_t **vpp,
3674         cred_t *cr,
3675         int flags,
3676         caller_context_t *ct,
3677         vsecattr_t *vsecp)      /* ACL to set during create */
3678 {
3679         int ret;
3680 
3681         if (vsecp != NULL &&
3682             vfs_has_feature(dvp->v_vfsp, VFSFT_ACLONCREATE) == 0) {
3683                 return (EINVAL);
3684         }
3685         /*
3686          * If this file system doesn't support case-insensitive access
3687          * and said access is requested, fail quickly.
3688          */
3689         if (flags & FIGNORECASE &&
3690             (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3691             vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3692                 return (EINVAL);
3693 
3694         VOPXID_MAP_CR(dvp, cr);
3695 
3696         ret = (*(dvp)->v_op->vop_create)
3697             (dvp, name, vap, excl, mode, vpp, cr, flags, ct, vsecp);
3698         if (ret == 0 && *vpp) {
3699                 VOPSTATS_UPDATE(*vpp, create);
3700                 vn_updatepath(dvp, *vpp, name);
3701         }
3702 
3703         return (ret);
3704 }
3705 
3706 int
3707 fop_remove(
3708         vnode_t *dvp,
3709         char *nm,
3710         cred_t *cr,
3711         caller_context_t *ct,
3712         int flags)
3713 {
3714         int     err;
3715 
3716         /*
3717          * If this file system doesn't support case-insensitive access
3718          * and said access is requested, fail quickly.
3719          */
3720         if (flags & FIGNORECASE &&
3721             (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3722             vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3723                 return (EINVAL);
3724 
3725         VOPXID_MAP_CR(dvp, cr);
3726 
3727         err = (*(dvp)->v_op->vop_remove)(dvp, nm, cr, ct, flags);
3728         VOPSTATS_UPDATE(dvp, remove);
3729         return (err);
3730 }
3731 
3732 int
3733 fop_link(
3734         vnode_t *tdvp,
3735         vnode_t *svp,
3736         char *tnm,
3737         cred_t *cr,
3738         caller_context_t *ct,
3739         int flags)
3740 {
3741         int     err;
3742 
3743         /*
3744          * If the target file system doesn't support case-insensitive access
3745          * and said access is requested, fail quickly.
3746          */
3747         if (flags & FIGNORECASE &&
3748             (vfs_has_feature(tdvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3749             vfs_has_feature(tdvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3750                 return (EINVAL);
3751 
3752         VOPXID_MAP_CR(tdvp, cr);
3753 
3754         err = (*(tdvp)->v_op->vop_link)(tdvp, svp, tnm, cr, ct, flags);
3755         VOPSTATS_UPDATE(tdvp, link);
3756         return (err);
3757 }
3758 
3759 int
3760 fop_rename(
3761         vnode_t *sdvp,
3762         char *snm,
3763         vnode_t *tdvp,
3764         char *tnm,
3765         cred_t *cr,
3766         caller_context_t *ct,
3767         int flags)
3768 {
3769         int     err;
3770 
3771         /*
3772          * If the file system involved does not support
3773          * case-insensitive access and said access is requested, fail
3774          * quickly.
3775          */
3776         if (flags & FIGNORECASE &&
3777             ((vfs_has_feature(sdvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3778             vfs_has_feature(sdvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)))
3779                 return (EINVAL);
3780 
3781         VOPXID_MAP_CR(tdvp, cr);
3782 
3783         err = (*(sdvp)->v_op->vop_rename)(sdvp, snm, tdvp, tnm, cr, ct, flags);
3784         VOPSTATS_UPDATE(sdvp, rename);
3785         return (err);
3786 }
3787 
3788 int
3789 fop_mkdir(
3790         vnode_t *dvp,
3791         char *dirname,
3792         vattr_t *vap,
3793         vnode_t **vpp,
3794         cred_t *cr,
3795         caller_context_t *ct,
3796         int flags,
3797         vsecattr_t *vsecp)      /* ACL to set during create */
3798 {
3799         int ret;
3800 
3801         if (vsecp != NULL &&
3802             vfs_has_feature(dvp->v_vfsp, VFSFT_ACLONCREATE) == 0) {
3803                 return (EINVAL);
3804         }
3805         /*
3806          * If this file system doesn't support case-insensitive access
3807          * and said access is requested, fail quickly.
3808          */
3809         if (flags & FIGNORECASE &&
3810             (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3811             vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3812                 return (EINVAL);
3813 
3814         VOPXID_MAP_CR(dvp, cr);
3815 
3816         ret = (*(dvp)->v_op->vop_mkdir)
3817             (dvp, dirname, vap, vpp, cr, ct, flags, vsecp);
3818         if (ret == 0 && *vpp) {
3819                 VOPSTATS_UPDATE(*vpp, mkdir);
3820                 vn_updatepath(dvp, *vpp, dirname);
3821         }
3822 
3823         return (ret);
3824 }
3825 
3826 int
3827 fop_rmdir(
3828         vnode_t *dvp,
3829         char *nm,
3830         vnode_t *cdir,
3831         cred_t *cr,
3832         caller_context_t *ct,
3833         int flags)
3834 {
3835         int     err;
3836 
3837         /*
3838          * If this file system doesn't support case-insensitive access
3839          * and said access is requested, fail quickly.
3840          */
3841         if (flags & FIGNORECASE &&
3842             (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3843             vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3844                 return (EINVAL);
3845 
3846         VOPXID_MAP_CR(dvp, cr);
3847 
3848         err = (*(dvp)->v_op->vop_rmdir)(dvp, nm, cdir, cr, ct, flags);
3849         VOPSTATS_UPDATE(dvp, rmdir);
3850         return (err);
3851 }
3852 
3853 int
3854 fop_readdir(
3855         vnode_t *vp,
3856         uio_t *uiop,
3857         cred_t *cr,
3858         int *eofp,
3859         caller_context_t *ct,
3860         int flags)
3861 {
3862         int     err;
3863         ssize_t resid_start = uiop->uio_resid;
3864 
3865         /*
3866          * If this file system doesn't support retrieving directory
3867          * entry flags and said access is requested, fail quickly.
3868          */
3869         if (flags & V_RDDIR_ENTFLAGS &&
3870             vfs_has_feature(vp->v_vfsp, VFSFT_DIRENTFLAGS) == 0)
3871                 return (EINVAL);
3872 
3873         VOPXID_MAP_CR(vp, cr);
3874 
3875         err = (*(vp)->v_op->vop_readdir)(vp, uiop, cr, eofp, ct, flags);
3876         VOPSTATS_UPDATE_IO(vp, readdir,
3877             readdir_bytes, (resid_start - uiop->uio_resid));
3878         return (err);
3879 }
3880 
3881 int
3882 fop_symlink(
3883         vnode_t *dvp,
3884         char *linkname,
3885         vattr_t *vap,
3886         char *target,
3887         cred_t *cr,
3888         caller_context_t *ct,
3889         int flags)
3890 {
3891         int     err;
3892         xvattr_t xvattr;
3893 
3894         /*
3895          * If this file system doesn't support case-insensitive access
3896          * and said access is requested, fail quickly.
3897          */
3898         if (flags & FIGNORECASE &&
3899             (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3900             vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3901                 return (EINVAL);
3902 
3903         VOPXID_MAP_CR(dvp, cr);
3904 
3905         /* check for reparse point */
3906         if ((vfs_has_feature(dvp->v_vfsp, VFSFT_REPARSE)) &&
3907             (strncmp(target, FS_REPARSE_TAG_STR,
3908             strlen(FS_REPARSE_TAG_STR)) == 0)) {
3909                 if (!fs_reparse_mark(target, vap, &xvattr))
3910                         vap = (vattr_t *)&xvattr;
3911         }
3912 
3913         err = (*(dvp)->v_op->vop_symlink)
3914             (dvp, linkname, vap, target, cr, ct, flags);
3915         VOPSTATS_UPDATE(dvp, symlink);
3916         return (err);
3917 }
3918 
3919 int
3920 fop_readlink(
3921         vnode_t *vp,
3922         uio_t *uiop,
3923         cred_t *cr,
3924         caller_context_t *ct)
3925 {
3926         int     err;
3927 
3928         VOPXID_MAP_CR(vp, cr);
3929 
3930         err = (*(vp)->v_op->vop_readlink)(vp, uiop, cr, ct);
3931         VOPSTATS_UPDATE(vp, readlink);
3932         return (err);
3933 }
3934 
3935 int
3936 fop_fsync(
3937         vnode_t *vp,
3938         int syncflag,
3939         cred_t *cr,
3940         caller_context_t *ct)
3941 {
3942         int     err;
3943 
3944         VOPXID_MAP_CR(vp, cr);
3945 
3946         err = (*(vp)->v_op->vop_fsync)(vp, syncflag, cr, ct);
3947         VOPSTATS_UPDATE(vp, fsync);
3948         return (err);
3949 }
3950 
3951 void
3952 fop_inactive(
3953         vnode_t *vp,
3954         cred_t *cr,
3955         caller_context_t *ct)
3956 {
3957         /* Need to update stats before vop call since we may lose the vnode */
3958         VOPSTATS_UPDATE(vp, inactive);
3959 
3960         VOPXID_MAP_CR(vp, cr);
3961 
3962         (*(vp)->v_op->vop_inactive)(vp, cr, ct);
3963 }
3964 
3965 int
3966 fop_fid(
3967         vnode_t *vp,
3968         fid_t *fidp,
3969         caller_context_t *ct)
3970 {
3971         int     err;
3972 
3973         err = (*(vp)->v_op->vop_fid)(vp, fidp, ct);
3974         VOPSTATS_UPDATE(vp, fid);
3975         return (err);
3976 }
3977 
3978 int
3979 fop_rwlock(
3980         vnode_t *vp,
3981         int write_lock,
3982         caller_context_t *ct)
3983 {
3984         int     ret;
3985 
3986         ret = ((*(vp)->v_op->vop_rwlock)(vp, write_lock, ct));
3987         VOPSTATS_UPDATE(vp, rwlock);
3988         return (ret);
3989 }
3990 
3991 void
3992 fop_rwunlock(
3993         vnode_t *vp,
3994         int write_lock,
3995         caller_context_t *ct)
3996 {
3997         (*(vp)->v_op->vop_rwunlock)(vp, write_lock, ct);
3998         VOPSTATS_UPDATE(vp, rwunlock);
3999 }
4000 
4001 int
4002 fop_seek(
4003         vnode_t *vp,
4004         offset_t ooff,
4005         offset_t *noffp,
4006         caller_context_t *ct)
4007 {
4008         int     err;
4009 
4010         err = (*(vp)->v_op->vop_seek)(vp, ooff, noffp, ct);
4011         VOPSTATS_UPDATE(vp, seek);
4012         return (err);
4013 }
4014 
4015 int
4016 fop_cmp(
4017         vnode_t *vp1,
4018         vnode_t *vp2,
4019         caller_context_t *ct)
4020 {
4021         int     err;
4022 
4023         err = (*(vp1)->v_op->vop_cmp)(vp1, vp2, ct);
4024         VOPSTATS_UPDATE(vp1, cmp);
4025         return (err);
4026 }
4027 
4028 int
4029 fop_frlock(
4030         vnode_t *vp,
4031         int cmd,
4032         flock64_t *bfp,
4033         int flag,
4034         offset_t offset,
4035         struct flk_callback *flk_cbp,
4036         cred_t *cr,
4037         caller_context_t *ct)
4038 {
4039         int     err;
4040 
4041         VOPXID_MAP_CR(vp, cr);
4042 
4043         err = (*(vp)->v_op->vop_frlock)
4044             (vp, cmd, bfp, flag, offset, flk_cbp, cr, ct);
4045         VOPSTATS_UPDATE(vp, frlock);
4046         return (err);
4047 }
4048 
4049 int
4050 fop_space(
4051         vnode_t *vp,
4052         int cmd,
4053         flock64_t *bfp,
4054         int flag,
4055         offset_t offset,
4056         cred_t *cr,
4057         caller_context_t *ct)
4058 {
4059         int     err;
4060 
4061         VOPXID_MAP_CR(vp, cr);
4062 
4063         err = (*(vp)->v_op->vop_space)(vp, cmd, bfp, flag, offset, cr, ct);
4064         VOPSTATS_UPDATE(vp, space);
4065         return (err);
4066 }
4067 
4068 int
4069 fop_realvp(
4070         vnode_t *vp,
4071         vnode_t **vpp,
4072         caller_context_t *ct)
4073 {
4074         int     err;
4075 
4076         err = (*(vp)->v_op->vop_realvp)(vp, vpp, ct);
4077         VOPSTATS_UPDATE(vp, realvp);
4078         return (err);
4079 }
4080 
4081 int
4082 fop_getpage(
4083         vnode_t *vp,
4084         offset_t off,
4085         size_t len,
4086         uint_t *protp,
4087         page_t **plarr,
4088         size_t plsz,
4089         struct seg *seg,
4090         caddr_t addr,
4091         enum seg_rw rw,
4092         cred_t *cr,
4093         caller_context_t *ct)
4094 {
4095         int     err;
4096 
4097         VOPXID_MAP_CR(vp, cr);
4098 
4099         err = (*(vp)->v_op->vop_getpage)
4100             (vp, off, len, protp, plarr, plsz, seg, addr, rw, cr, ct);
4101         VOPSTATS_UPDATE(vp, getpage);
4102         return (err);
4103 }
4104 
4105 int
4106 fop_putpage(
4107         vnode_t *vp,
4108         offset_t off,
4109         size_t len,
4110         int flags,
4111         cred_t *cr,
4112         caller_context_t *ct)
4113 {
4114         int     err;
4115 
4116         VOPXID_MAP_CR(vp, cr);
4117 
4118         err = (*(vp)->v_op->vop_putpage)(vp, off, len, flags, cr, ct);
4119         VOPSTATS_UPDATE(vp, putpage);
4120         return (err);
4121 }
4122 
4123 int
4124 fop_map(
4125         vnode_t *vp,
4126         offset_t off,
4127         struct as *as,
4128         caddr_t *addrp,
4129         size_t len,
4130         uchar_t prot,
4131         uchar_t maxprot,
4132         uint_t flags,
4133         cred_t *cr,
4134         caller_context_t *ct)
4135 {
4136         int     err;
4137 
4138         VOPXID_MAP_CR(vp, cr);
4139 
4140         err = (*(vp)->v_op->vop_map)
4141             (vp, off, as, addrp, len, prot, maxprot, flags, cr, ct);
4142         VOPSTATS_UPDATE(vp, map);
4143         return (err);
4144 }
4145 
4146 int
4147 fop_addmap(
4148         vnode_t *vp,
4149         offset_t off,
4150         struct as *as,
4151         caddr_t addr,
4152         size_t len,
4153         uchar_t prot,
4154         uchar_t maxprot,
4155         uint_t flags,
4156         cred_t *cr,
4157         caller_context_t *ct)
4158 {
4159         int error;
4160         u_longlong_t delta;
4161 
4162         VOPXID_MAP_CR(vp, cr);
4163 
4164         error = (*(vp)->v_op->vop_addmap)
4165             (vp, off, as, addr, len, prot, maxprot, flags, cr, ct);
4166 
4167         if ((!error) && (vp->v_type == VREG)) {
4168                 delta = (u_longlong_t)btopr(len);
4169                 /*
4170                  * If file is declared MAP_PRIVATE, it can't be written back
4171                  * even if open for write. Handle as read.
4172                  */
4173                 if (flags & MAP_PRIVATE) {
4174                         atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4175                             (int64_t)delta);
4176                 } else {
4177                         /*
4178                          * atomic_add_64 forces the fetch of a 64 bit value to
4179                          * be atomic on 32 bit machines
4180                          */
4181                         if (maxprot & PROT_WRITE)
4182                                 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)),
4183                                     (int64_t)delta);
4184                         if (maxprot & PROT_READ)
4185                                 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4186                                     (int64_t)delta);
4187                         if (maxprot & PROT_EXEC)
4188                                 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4189                                     (int64_t)delta);
4190                 }
4191         }
4192         VOPSTATS_UPDATE(vp, addmap);
4193         return (error);
4194 }
4195 
4196 int
4197 fop_delmap(
4198         vnode_t *vp,
4199         offset_t off,
4200         struct as *as,
4201         caddr_t addr,
4202         size_t len,
4203         uint_t prot,
4204         uint_t maxprot,
4205         uint_t flags,
4206         cred_t *cr,
4207         caller_context_t *ct)
4208 {
4209         int error;
4210         u_longlong_t delta;
4211 
4212         VOPXID_MAP_CR(vp, cr);
4213 
4214         error = (*(vp)->v_op->vop_delmap)
4215             (vp, off, as, addr, len, prot, maxprot, flags, cr, ct);
4216 
4217         /*
4218          * NFS calls into delmap twice, the first time
4219          * it simply establishes a callback mechanism and returns EAGAIN
4220          * while the real work is being done upon the second invocation.
4221          * We have to detect this here and only decrement the counts upon
4222          * the second delmap request.
4223          */
4224         if ((error != EAGAIN) && (vp->v_type == VREG)) {
4225 
4226                 delta = (u_longlong_t)btopr(len);
4227 
4228                 if (flags & MAP_PRIVATE) {
4229                         atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4230                             (int64_t)(-delta));
4231                 } else {
4232                         /*
4233                          * atomic_add_64 forces the fetch of a 64 bit value
4234                          * to be atomic on 32 bit machines
4235                          */
4236                         if (maxprot & PROT_WRITE)
4237                                 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)),
4238                                     (int64_t)(-delta));
4239                         if (maxprot & PROT_READ)
4240                                 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4241                                     (int64_t)(-delta));
4242                         if (maxprot & PROT_EXEC)
4243                                 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4244                                     (int64_t)(-delta));
4245                 }
4246         }
4247         VOPSTATS_UPDATE(vp, delmap);
4248         return (error);
4249 }
4250 
4251 
4252 int
4253 fop_poll(
4254         vnode_t *vp,
4255         short events,
4256         int anyyet,
4257         short *reventsp,
4258         struct pollhead **phpp,
4259         caller_context_t *ct)
4260 {
4261         int     err;
4262 
4263         err = (*(vp)->v_op->vop_poll)(vp, events, anyyet, reventsp, phpp, ct);
4264         VOPSTATS_UPDATE(vp, poll);
4265         return (err);
4266 }
4267 
4268 int
4269 fop_dump(
4270         vnode_t *vp,
4271         caddr_t addr,
4272         offset_t lbdn,
4273         offset_t dblks,
4274         caller_context_t *ct)
4275 {
4276         int     err;
4277 
4278         /* ensure lbdn and dblks can be passed safely to bdev_dump */
4279         if ((lbdn != (daddr_t)lbdn) || (dblks != (int)dblks))
4280                 return (EIO);
4281 
4282         err = (*(vp)->v_op->vop_dump)(vp, addr, lbdn, dblks, ct);
4283         VOPSTATS_UPDATE(vp, dump);
4284         return (err);
4285 }
4286 
4287 int
4288 fop_pathconf(
4289         vnode_t *vp,
4290         int cmd,
4291         ulong_t *valp,
4292         cred_t *cr,
4293         caller_context_t *ct)
4294 {
4295         int     err;
4296 
4297         VOPXID_MAP_CR(vp, cr);
4298 
4299         err = (*(vp)->v_op->vop_pathconf)(vp, cmd, valp, cr, ct);
4300         VOPSTATS_UPDATE(vp, pathconf);
4301         return (err);
4302 }
4303 
4304 int
4305 fop_pageio(
4306         vnode_t *vp,
4307         struct page *pp,
4308         u_offset_t io_off,
4309         size_t io_len,
4310         int flags,
4311         cred_t *cr,
4312         caller_context_t *ct)
4313 {
4314         int     err;
4315 
4316         VOPXID_MAP_CR(vp, cr);
4317 
4318         err = (*(vp)->v_op->vop_pageio)(vp, pp, io_off, io_len, flags, cr, ct);
4319         VOPSTATS_UPDATE(vp, pageio);
4320         return (err);
4321 }
4322 
4323 int
4324 fop_dumpctl(
4325         vnode_t *vp,
4326         int action,
4327         offset_t *blkp,
4328         caller_context_t *ct)
4329 {
4330         int     err;
4331         err = (*(vp)->v_op->vop_dumpctl)(vp, action, blkp, ct);
4332         VOPSTATS_UPDATE(vp, dumpctl);
4333         return (err);
4334 }
4335 
4336 void
4337 fop_dispose(
4338         vnode_t *vp,
4339         page_t *pp,
4340         int flag,
4341         int dn,
4342         cred_t *cr,
4343         caller_context_t *ct)
4344 {
4345         /* Must do stats first since it's possible to lose the vnode */
4346         VOPSTATS_UPDATE(vp, dispose);
4347 
4348         VOPXID_MAP_CR(vp, cr);
4349 
4350         (*(vp)->v_op->vop_dispose)(vp, pp, flag, dn, cr, ct);
4351 }
4352 
4353 int
4354 fop_setsecattr(
4355         vnode_t *vp,
4356         vsecattr_t *vsap,
4357         int flag,
4358         cred_t *cr,
4359         caller_context_t *ct)
4360 {
4361         int     err;
4362 
4363         VOPXID_MAP_CR(vp, cr);
4364 
4365         /*
4366          * We're only allowed to skip the ACL check iff we used a 32 bit
4367          * ACE mask with VOP_ACCESS() to determine permissions.
4368          */
4369         if ((flag & ATTR_NOACLCHECK) &&
4370             vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
4371                 return (EINVAL);
4372         }
4373         err = (*(vp)->v_op->vop_setsecattr) (vp, vsap, flag, cr, ct);
4374         VOPSTATS_UPDATE(vp, setsecattr);
4375         return (err);
4376 }
4377 
4378 int
4379 fop_getsecattr(
4380         vnode_t *vp,
4381         vsecattr_t *vsap,
4382         int flag,
4383         cred_t *cr,
4384         caller_context_t *ct)
4385 {
4386         int     err;
4387 
4388         /*
4389          * We're only allowed to skip the ACL check iff we used a 32 bit
4390          * ACE mask with VOP_ACCESS() to determine permissions.
4391          */
4392         if ((flag & ATTR_NOACLCHECK) &&
4393             vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
4394                 return (EINVAL);
4395         }
4396 
4397         VOPXID_MAP_CR(vp, cr);
4398 
4399         err = (*(vp)->v_op->vop_getsecattr) (vp, vsap, flag, cr, ct);
4400         VOPSTATS_UPDATE(vp, getsecattr);
4401         return (err);
4402 }
4403 
4404 int
4405 fop_shrlock(
4406         vnode_t *vp,
4407         int cmd,
4408         struct shrlock *shr,
4409         int flag,
4410         cred_t *cr,
4411         caller_context_t *ct)
4412 {
4413         int     err;
4414 
4415         VOPXID_MAP_CR(vp, cr);
4416 
4417         err = (*(vp)->v_op->vop_shrlock)(vp, cmd, shr, flag, cr, ct);
4418         VOPSTATS_UPDATE(vp, shrlock);
4419         return (err);
4420 }
4421 
4422 int
4423 fop_vnevent(vnode_t *vp, vnevent_t vnevent, vnode_t *dvp, char *fnm,
4424     caller_context_t *ct)
4425 {
4426         int     err;
4427 
4428         err = (*(vp)->v_op->vop_vnevent)(vp, vnevent, dvp, fnm, ct);
4429         VOPSTATS_UPDATE(vp, vnevent);
4430         return (err);
4431 }
4432 
4433 int
4434 fop_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *uiop, cred_t *cr,
4435     caller_context_t *ct)
4436 {
4437         int err;
4438 
4439         if (vfs_has_feature(vp->v_vfsp, VFSFT_ZEROCOPY_SUPPORTED) == 0)
4440                 return (ENOTSUP);
4441         err = (*(vp)->v_op->vop_reqzcbuf)(vp, ioflag, uiop, cr, ct);
4442         VOPSTATS_UPDATE(vp, reqzcbuf);
4443         return (err);
4444 }
4445 
4446 int
4447 fop_retzcbuf(vnode_t *vp, xuio_t *uiop, cred_t *cr, caller_context_t *ct)
4448 {
4449         int err;
4450 
4451         if (vfs_has_feature(vp->v_vfsp, VFSFT_ZEROCOPY_SUPPORTED) == 0)
4452                 return (ENOTSUP);
4453         err = (*(vp)->v_op->vop_retzcbuf)(vp, uiop, cr, ct);
4454         VOPSTATS_UPDATE(vp, retzcbuf);
4455         return (err);
4456 }
4457 
4458 /*
4459  * Default destructor
4460  *      Needed because NULL destructor means that the key is unused
4461  */
4462 /* ARGSUSED */
4463 void
4464 vsd_defaultdestructor(void *value)
4465 {}
4466 
4467 /*
4468  * Create a key (index into per vnode array)
4469  *      Locks out vsd_create, vsd_destroy, and vsd_free
4470  *      May allocate memory with lock held
4471  */
4472 void
4473 vsd_create(uint_t *keyp, void (*destructor)(void *))
4474 {
4475         int     i;
4476         uint_t  nkeys;
4477 
4478         /*
4479          * if key is allocated, do nothing
4480          */
4481         mutex_enter(&vsd_lock);
4482         if (*keyp) {
4483                 mutex_exit(&vsd_lock);
4484                 return;
4485         }
4486         /*
4487          * find an unused key
4488          */
4489         if (destructor == NULL)
4490                 destructor = vsd_defaultdestructor;
4491 
4492         for (i = 0; i < vsd_nkeys; ++i)
4493                 if (vsd_destructor[i] == NULL)
4494                         break;
4495 
4496         /*
4497          * if no unused keys, increase the size of the destructor array
4498          */
4499         if (i == vsd_nkeys) {
4500                 if ((nkeys = (vsd_nkeys << 1)) == 0)
4501                         nkeys = 1;
4502                 vsd_destructor =
4503                     (void (**)(void *))vsd_realloc((void *)vsd_destructor,
4504                     (size_t)(vsd_nkeys * sizeof (void (*)(void *))),
4505                     (size_t)(nkeys * sizeof (void (*)(void *))));
4506                 vsd_nkeys = nkeys;
4507         }
4508 
4509         /*
4510          * allocate the next available unused key
4511          */
4512         vsd_destructor[i] = destructor;
4513         *keyp = i + 1;
4514 
4515         /* create vsd_list, if it doesn't exist */
4516         if (vsd_list == NULL) {
4517                 vsd_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
4518                 list_create(vsd_list, sizeof (struct vsd_node),
4519                     offsetof(struct vsd_node, vs_nodes));
4520         }
4521 
4522         mutex_exit(&vsd_lock);
4523 }
4524 
4525 /*
4526  * Destroy a key
4527  *
4528  * Assumes that the caller is preventing vsd_set and vsd_get
4529  * Locks out vsd_create, vsd_destroy, and vsd_free
4530  * May free memory with lock held
4531  */
4532 void
4533 vsd_destroy(uint_t *keyp)
4534 {
4535         uint_t key;
4536         struct vsd_node *vsd;
4537 
4538         /*
4539          * protect the key namespace and our destructor lists
4540          */
4541         mutex_enter(&vsd_lock);
4542         key = *keyp;
4543         *keyp = 0;
4544 
4545         ASSERT(key <= vsd_nkeys);
4546 
4547         /*
4548          * if the key is valid
4549          */
4550         if (key != 0) {
4551                 uint_t k = key - 1;
4552                 /*
4553                  * for every vnode with VSD, call key's destructor
4554                  */
4555                 for (vsd = list_head(vsd_list); vsd != NULL;
4556                     vsd = list_next(vsd_list, vsd)) {
4557                         /*
4558                          * no VSD for key in this vnode
4559                          */
4560                         if (key > vsd->vs_nkeys)
4561                                 continue;
4562                         /*
4563                          * call destructor for key
4564                          */
4565                         if (vsd->vs_value[k] && vsd_destructor[k])
4566                                 (*vsd_destructor[k])(vsd->vs_value[k]);
4567                         /*
4568                          * reset value for key
4569                          */
4570                         vsd->vs_value[k] = NULL;
4571                 }
4572                 /*
4573                  * actually free the key (NULL destructor == unused)
4574                  */
4575                 vsd_destructor[k] = NULL;
4576         }
4577 
4578         mutex_exit(&vsd_lock);
4579 }
4580 
4581 /*
4582  * Quickly return the per vnode value that was stored with the specified key
4583  * Assumes the caller is protecting key from vsd_create and vsd_destroy
4584  * Assumes the caller is holding v_vsd_lock to protect the vsd.
4585  */
4586 void *
4587 vsd_get(vnode_t *vp, uint_t key)
4588 {
4589         struct vsd_node *vsd;
4590 
4591         ASSERT(vp != NULL);
4592         ASSERT(mutex_owned(&vp->v_vsd_lock));
4593 
4594         vsd = vp->v_vsd;
4595 
4596         if (key && vsd != NULL && key <= vsd->vs_nkeys)
4597                 return (vsd->vs_value[key - 1]);
4598         return (NULL);
4599 }
4600 
4601 /*
4602  * Set a per vnode value indexed with the specified key
4603  * Assumes the caller is holding v_vsd_lock to protect the vsd.
4604  */
4605 int
4606 vsd_set(vnode_t *vp, uint_t key, void *value)
4607 {
4608         struct vsd_node *vsd;
4609 
4610         ASSERT(vp != NULL);
4611         ASSERT(mutex_owned(&vp->v_vsd_lock));
4612 
4613         if (key == 0)
4614                 return (EINVAL);
4615 
4616         vsd = vp->v_vsd;
4617         if (vsd == NULL)
4618                 vsd = vp->v_vsd = kmem_zalloc(sizeof (*vsd), KM_SLEEP);
4619 
4620         /*
4621          * If the vsd was just allocated, vs_nkeys will be 0, so the following
4622          * code won't happen and we will continue down and allocate space for
4623          * the vs_value array.
4624          * If the caller is replacing one value with another, then it is up
4625          * to the caller to free/rele/destroy the previous value (if needed).
4626          */
4627         if (key <= vsd->vs_nkeys) {
4628                 vsd->vs_value[key - 1] = value;
4629                 return (0);
4630         }
4631 
4632         ASSERT(key <= vsd_nkeys);
4633 
4634         if (vsd->vs_nkeys == 0) {
4635                 mutex_enter(&vsd_lock);     /* lock out vsd_destroy() */
4636                 /*
4637                  * Link onto list of all VSD nodes.
4638                  */
4639                 list_insert_head(vsd_list, vsd);
4640                 mutex_exit(&vsd_lock);
4641         }
4642 
4643         /*
4644          * Allocate vnode local storage and set the value for key
4645          */
4646         vsd->vs_value = vsd_realloc(vsd->vs_value,
4647             vsd->vs_nkeys * sizeof (void *),
4648             key * sizeof (void *));
4649         vsd->vs_nkeys = key;
4650         vsd->vs_value[key - 1] = value;
4651 
4652         return (0);
4653 }
4654 
4655 /*
4656  * Called from vn_free() to run the destructor function for each vsd
4657  *      Locks out vsd_create and vsd_destroy
4658  *      Assumes that the destructor *DOES NOT* use vsd
4659  */
4660 void
4661 vsd_free(vnode_t *vp)
4662 {
4663         int i;
4664         struct vsd_node *vsd = vp->v_vsd;
4665 
4666         if (vsd == NULL)
4667                 return;
4668 
4669         if (vsd->vs_nkeys == 0) {
4670                 kmem_free(vsd, sizeof (*vsd));
4671                 vp->v_vsd = NULL;
4672                 return;
4673         }
4674 
4675         /*
4676          * lock out vsd_create and vsd_destroy, call
4677          * the destructor, and mark the value as destroyed.
4678          */
4679         mutex_enter(&vsd_lock);
4680 
4681         for (i = 0; i < vsd->vs_nkeys; i++) {
4682                 if (vsd->vs_value[i] && vsd_destructor[i])
4683                         (*vsd_destructor[i])(vsd->vs_value[i]);
4684                 vsd->vs_value[i] = NULL;
4685         }
4686 
4687         /*
4688          * remove from linked list of VSD nodes
4689          */
4690         list_remove(vsd_list, vsd);
4691 
4692         mutex_exit(&vsd_lock);
4693 
4694         /*
4695          * free up the VSD
4696          */
4697         kmem_free(vsd->vs_value, vsd->vs_nkeys * sizeof (void *));
4698         kmem_free(vsd, sizeof (struct vsd_node));
4699         vp->v_vsd = NULL;
4700 }
4701 
4702 /*
4703  * realloc
4704  */
4705 static void *
4706 vsd_realloc(void *old, size_t osize, size_t nsize)
4707 {
4708         void *new;
4709 
4710         new = kmem_zalloc(nsize, KM_SLEEP);
4711         if (old) {
4712                 bcopy(old, new, osize);
4713                 kmem_free(old, osize);
4714         }
4715         return (new);
4716 }
4717 
4718 /*
4719  * Setup the extensible system attribute for creating a reparse point.
4720  * The symlink data 'target' is validated for proper format of a reparse
4721  * string and a check also made to make sure the symlink data does not
4722  * point to an existing file.
4723  *
4724  * return 0 if ok else -1.
4725  */
4726 static int
4727 fs_reparse_mark(char *target, vattr_t *vap, xvattr_t *xvattr)
4728 {
4729         xoptattr_t *xoap;
4730 
4731         if ((!target) || (!vap) || (!xvattr))
4732                 return (-1);
4733 
4734         /* validate reparse string */
4735         if (reparse_validate((const char *)target))
4736                 return (-1);
4737 
4738         xva_init(xvattr);
4739         xvattr->xva_vattr = *vap;
4740         xvattr->xva_vattr.va_mask |= AT_XVATTR;
4741         xoap = xva_getxoptattr(xvattr);
4742         ASSERT(xoap);
4743         XVA_SET_REQ(xvattr, XAT_REPARSE);
4744         xoap->xoa_reparse = 1;
4745 
4746         return (0);
4747 }
4748 
4749 /*
4750  * Function to check whether a symlink is a reparse point.
4751  * Return B_TRUE if it is a reparse point, else return B_FALSE
4752  */
4753 boolean_t
4754 vn_is_reparse(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4755 {
4756         xvattr_t xvattr;
4757         xoptattr_t *xoap;
4758 
4759         if ((vp->v_type != VLNK) ||
4760             !(vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR)))
4761                 return (B_FALSE);
4762 
4763         xva_init(&xvattr);
4764         xoap = xva_getxoptattr(&xvattr);
4765         ASSERT(xoap);
4766         XVA_SET_REQ(&xvattr, XAT_REPARSE);
4767 
4768         if (VOP_GETATTR(vp, &xvattr.xva_vattr, 0, cr, ct))
4769                 return (B_FALSE);
4770 
4771         if ((!(xvattr.xva_vattr.va_mask & AT_XVATTR)) ||
4772             (!(XVA_ISSET_RTN(&xvattr, XAT_REPARSE))))
4773                 return (B_FALSE);
4774 
4775         return (xoap->xoa_reparse ? B_TRUE : B_FALSE);
4776 }