1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
  24  * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
  25  * Copyright (c) 2015 by Delphix. All rights reserved.
  26  * Copyright (c) 2015 Joyent, Inc.  All rights reserved.
  27  */
  28 
  29 #include <sys/param.h>
  30 #include <sys/errno.h>
  31 #include <sys/vfs.h>
  32 #include <sys/vnode.h>
  33 #include <sys/cred.h>
  34 #include <sys/cmn_err.h>
  35 #include <sys/systm.h>
  36 #include <sys/kmem.h>
  37 #include <sys/pathname.h>
  38 #include <sys/utsname.h>
  39 #include <sys/debug.h>
  40 #include <sys/door.h>
  41 #include <sys/sdt.h>
  42 #include <sys/thread.h>
  43 #include <sys/avl.h>
  44 
  45 #include <rpc/types.h>
  46 #include <rpc/auth.h>
  47 #include <rpc/clnt.h>
  48 
  49 #include <nfs/nfs.h>
  50 #include <nfs/export.h>
  51 #include <nfs/nfs_clnt.h>
  52 #include <nfs/auth.h>
  53 
  54 static struct kmem_cache *exi_cache_handle;
  55 static void exi_cache_reclaim(void *);
  56 static void exi_cache_trim(struct exportinfo *exi);
  57 
  58 extern pri_t minclsyspri;
  59 
  60 volatile uint_t nfsauth_cache_hit;
  61 volatile uint_t nfsauth_cache_miss;
  62 volatile uint_t nfsauth_cache_refresh;
  63 volatile uint_t nfsauth_cache_reclaim;
  64 volatile uint_t exi_cache_auth_reclaim_failed;
  65 volatile uint_t exi_cache_clnt_reclaim_failed;
  66 
  67 /*
  68  * The lifetime of an auth cache entry:
  69  * ------------------------------------
  70  *
  71  * An auth cache entry is created with both the auth_time
  72  * and auth_freshness times set to the current time.
  73  *
  74  * Upon every client access which results in a hit, the
  75  * auth_time will be updated.
  76  *
  77  * If a client access determines that the auth_freshness
  78  * indicates that the entry is STALE, then it will be
  79  * refreshed. Note that this will explicitly reset
  80  * auth_time.
  81  *
  82  * When the REFRESH successfully occurs, then the
  83  * auth_freshness is updated.
  84  *
  85  * There are two ways for an entry to leave the cache:
  86  *
  87  * 1) Purged by an action on the export (remove or changed)
  88  * 2) Memory backpressure from the kernel (check against NFSAUTH_CACHE_TRIM)
  89  *
  90  * For 2) we check the timeout value against auth_time.
  91  */
  92 
  93 /*
  94  * Number of seconds until we mark for refresh an auth cache entry.
  95  */
  96 #define NFSAUTH_CACHE_REFRESH 600
  97 
  98 /*
  99  * Number of idle seconds until we yield to backpressure
 100  * to trim a cache entry.
 101  */
 102 #define NFSAUTH_CACHE_TRIM 3600
 103 
 104 /*
 105  * While we could encapuslate the exi_list inside the
 106  * exi structure, we can't do that for the auth_list.
 107  * So, to keep things looking clean, we keep them both
 108  * in these external lists.
 109  */
 110 typedef struct refreshq_exi_node {
 111         struct exportinfo       *ren_exi;
 112         list_t                  ren_authlist;
 113         list_node_t             ren_node;
 114 } refreshq_exi_node_t;
 115 
 116 typedef struct refreshq_auth_node {
 117         struct auth_cache       *ran_auth;
 118         char                    *ran_netid;
 119         list_node_t             ran_node;
 120 } refreshq_auth_node_t;
 121 
 122 /*
 123  * Used to manipulate things on the refreshq_queue.
 124  * Note that the refresh thread will effectively
 125  * pop a node off of the queue, at which point it
 126  * will no longer need to hold the mutex.
 127  */
 128 static kmutex_t refreshq_lock;
 129 static list_t refreshq_queue;
 130 static kcondvar_t refreshq_cv;
 131 
 132 /*
 133  * If there is ever a problem with loading the
 134  * module, then nfsauth_fini() needs to be called
 135  * to remove state. In that event, since the
 136  * refreshq thread has been started, they need to
 137  * work together to get rid of state.
 138  */
 139 typedef enum nfsauth_refreshq_thread_state {
 140         REFRESHQ_THREAD_RUNNING,
 141         REFRESHQ_THREAD_FINI_REQ,
 142         REFRESHQ_THREAD_HALTED
 143 } nfsauth_refreshq_thread_state_t;
 144 
 145 nfsauth_refreshq_thread_state_t
 146 refreshq_thread_state = REFRESHQ_THREAD_HALTED;
 147 
 148 static void nfsauth_free_node(struct auth_cache *);
 149 static void nfsauth_refresh_thread(void);
 150 
 151 static int nfsauth_cache_compar(const void *, const void *);
 152 
 153 /*
 154  * mountd is a server-side only daemon. This will need to be
 155  * revisited if the NFS server is ever made zones-aware.
 156  */
 157 kmutex_t        mountd_lock;
 158 door_handle_t   mountd_dh;
 159 
 160 void
 161 mountd_args(uint_t did)
 162 {
 163         mutex_enter(&mountd_lock);
 164         if (mountd_dh != NULL)
 165                 door_ki_rele(mountd_dh);
 166         mountd_dh = door_ki_lookup(did);
 167         mutex_exit(&mountd_lock);
 168 }
 169 
 170 void
 171 nfsauth_init(void)
 172 {
 173         /*
 174          * mountd can be restarted by smf(5). We need to make sure
 175          * the updated door handle will safely make it to mountd_dh
 176          */
 177         mutex_init(&mountd_lock, NULL, MUTEX_DEFAULT, NULL);
 178 
 179         mutex_init(&refreshq_lock, NULL, MUTEX_DEFAULT, NULL);
 180         list_create(&refreshq_queue, sizeof (refreshq_exi_node_t),
 181             offsetof(refreshq_exi_node_t, ren_node));
 182 
 183         cv_init(&refreshq_cv, NULL, CV_DEFAULT, NULL);
 184 
 185         /*
 186          * Allocate nfsauth cache handle
 187          */
 188         exi_cache_handle = kmem_cache_create("exi_cache_handle",
 189             sizeof (struct auth_cache), 0, NULL, NULL,
 190             exi_cache_reclaim, NULL, NULL, 0);
 191 
 192         refreshq_thread_state = REFRESHQ_THREAD_RUNNING;
 193         (void) zthread_create(NULL, 0, nfsauth_refresh_thread,
 194             NULL, 0, minclsyspri);
 195 }
 196 
 197 /*
 198  * Finalization routine for nfsauth. It is important to call this routine
 199  * before destroying the exported_lock.
 200  */
 201 void
 202 nfsauth_fini(void)
 203 {
 204         refreshq_exi_node_t     *ren;
 205 
 206         /*
 207          * Prevent the nfsauth_refresh_thread from getting new
 208          * work.
 209          */
 210         mutex_enter(&refreshq_lock);
 211         if (refreshq_thread_state != REFRESHQ_THREAD_HALTED) {
 212                 refreshq_thread_state = REFRESHQ_THREAD_FINI_REQ;
 213                 cv_broadcast(&refreshq_cv);
 214 
 215                 /*
 216                  * Also, wait for nfsauth_refresh_thread() to exit.
 217                  */
 218                 while (refreshq_thread_state != REFRESHQ_THREAD_HALTED) {
 219                         cv_wait(&refreshq_cv, &refreshq_lock);
 220                 }
 221         }
 222         mutex_exit(&refreshq_lock);
 223 
 224         /*
 225          * Walk the exi_list and in turn, walk the auth_lists and free all
 226          * lists.  In addition, free INVALID auth_cache entries.
 227          */
 228         while ((ren = list_remove_head(&refreshq_queue))) {
 229                 refreshq_auth_node_t *ran;
 230 
 231                 while ((ran = list_remove_head(&ren->ren_authlist)) != NULL) {
 232                         struct auth_cache *p = ran->ran_auth;
 233                         if (p->auth_state == NFS_AUTH_INVALID)
 234                                 nfsauth_free_node(p);
 235                         strfree(ran->ran_netid);
 236                         kmem_free(ran, sizeof (refreshq_auth_node_t));
 237                 }
 238 
 239                 list_destroy(&ren->ren_authlist);
 240                 exi_rele(ren->ren_exi);
 241                 kmem_free(ren, sizeof (refreshq_exi_node_t));
 242         }
 243         list_destroy(&refreshq_queue);
 244 
 245         cv_destroy(&refreshq_cv);
 246         mutex_destroy(&refreshq_lock);
 247 
 248         mutex_destroy(&mountd_lock);
 249 
 250         /*
 251          * Deallocate nfsauth cache handle
 252          */
 253         kmem_cache_destroy(exi_cache_handle);
 254 }
 255 
 256 /*
 257  * Convert the address in a netbuf to
 258  * a hash index for the auth_cache table.
 259  */
 260 static int
 261 hash(struct netbuf *a)
 262 {
 263         int i, h = 0;
 264 
 265         for (i = 0; i < a->len; i++)
 266                 h ^= a->buf[i];
 267 
 268         return (h & (AUTH_TABLESIZE - 1));
 269 }
 270 
 271 /*
 272  * Mask out the components of an
 273  * address that do not identify
 274  * a host. For socket addresses the
 275  * masking gets rid of the port number.
 276  */
 277 static void
 278 addrmask(struct netbuf *addr, struct netbuf *mask)
 279 {
 280         int i;
 281 
 282         for (i = 0; i < addr->len; i++)
 283                 addr->buf[i] &= mask->buf[i];
 284 }
 285 
 286 /*
 287  * nfsauth4_access is used for NFS V4 auth checking. Besides doing
 288  * the common nfsauth_access(), it will check if the client can
 289  * have a limited access to this vnode even if the security flavor
 290  * used does not meet the policy.
 291  */
 292 int
 293 nfsauth4_access(struct exportinfo *exi, vnode_t *vp, struct svc_req *req,
 294     cred_t *cr, uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids)
 295 {
 296         int access;
 297 
 298         access = nfsauth_access(exi, req, cr, uid, gid, ngids, gids);
 299 
 300         /*
 301          * There are cases that the server needs to allow the client
 302          * to have a limited view.
 303          *
 304          * e.g.
 305          * /export is shared as "sec=sys,rw=dfs-test-4,sec=krb5,rw"
 306          * /export/home is shared as "sec=sys,rw"
 307          *
 308          * When the client mounts /export with sec=sys, the client
 309          * would get a limited view with RO access on /export to see
 310          * "home" only because the client is allowed to access
 311          * /export/home with auth_sys.
 312          */
 313         if (access & NFSAUTH_DENIED || access & NFSAUTH_WRONGSEC) {
 314                 /*
 315                  * Allow ro permission with LIMITED view if there is a
 316                  * sub-dir exported under vp.
 317                  */
 318                 if (has_visible(exi, vp))
 319                         return (NFSAUTH_LIMITED);
 320         }
 321 
 322         return (access);
 323 }
 324 
 325 static void
 326 sys_log(const char *msg)
 327 {
 328         static time_t   tstamp = 0;
 329         time_t          now;
 330 
 331         /*
 332          * msg is shown (at most) once per minute
 333          */
 334         now = gethrestime_sec();
 335         if ((tstamp + 60) < now) {
 336                 tstamp = now;
 337                 cmn_err(CE_WARN, msg);
 338         }
 339 }
 340 
 341 /*
 342  * Callup to the mountd to get access information in the kernel.
 343  */
 344 static bool_t
 345 nfsauth_retrieve(struct exportinfo *exi, char *req_netid, int flavor,
 346     struct netbuf *addr, int *access, cred_t *clnt_cred, uid_t *srv_uid,
 347     gid_t *srv_gid, uint_t *srv_gids_cnt, gid_t **srv_gids)
 348 {
 349         varg_t                    varg = {0};
 350         nfsauth_res_t             res = {0};
 351         XDR                       xdrs;
 352         size_t                    absz;
 353         caddr_t                   abuf;
 354         int                       last = 0;
 355         door_arg_t                da;
 356         door_info_t               di;
 357         door_handle_t             dh;
 358         uint_t                    ntries = 0;
 359 
 360         /*
 361          * No entry in the cache for this client/flavor
 362          * so we need to call the nfsauth service in the
 363          * mount daemon.
 364          */
 365 
 366         varg.vers = V_PROTO;
 367         varg.arg_u.arg.cmd = NFSAUTH_ACCESS;
 368         varg.arg_u.arg.areq.req_client.n_len = addr->len;
 369         varg.arg_u.arg.areq.req_client.n_bytes = addr->buf;
 370         varg.arg_u.arg.areq.req_netid = req_netid;
 371         varg.arg_u.arg.areq.req_path = exi->exi_export.ex_path;
 372         varg.arg_u.arg.areq.req_flavor = flavor;
 373         varg.arg_u.arg.areq.req_clnt_uid = crgetuid(clnt_cred);
 374         varg.arg_u.arg.areq.req_clnt_gid = crgetgid(clnt_cred);
 375         varg.arg_u.arg.areq.req_clnt_gids.len = crgetngroups(clnt_cred);
 376         varg.arg_u.arg.areq.req_clnt_gids.val = (gid_t *)crgetgroups(clnt_cred);
 377 
 378         DTRACE_PROBE1(nfsserv__func__nfsauth__varg, varg_t *, &varg);
 379 
 380         /*
 381          * Setup the XDR stream for encoding the arguments. Notice that
 382          * in addition to the args having variable fields (req_netid and
 383          * req_path), the argument data structure is itself versioned,
 384          * so we need to make sure we can size the arguments buffer
 385          * appropriately to encode all the args. If we can't get sizing
 386          * info _or_ properly encode the arguments, there's really no
 387          * point in continuting, so we fail the request.
 388          */
 389         if ((absz = xdr_sizeof(xdr_varg, &varg)) == 0) {
 390                 *access = NFSAUTH_DENIED;
 391                 return (FALSE);
 392         }
 393 
 394         abuf = (caddr_t)kmem_alloc(absz, KM_SLEEP);
 395         xdrmem_create(&xdrs, abuf, absz, XDR_ENCODE);
 396         if (!xdr_varg(&xdrs, &varg)) {
 397                 XDR_DESTROY(&xdrs);
 398                 goto fail;
 399         }
 400         XDR_DESTROY(&xdrs);
 401 
 402         /*
 403          * Prepare the door arguments
 404          *
 405          * We don't know the size of the message the daemon
 406          * will pass back to us.  By setting rbuf to NULL,
 407          * we force the door code to allocate a buf of the
 408          * appropriate size.  We must set rsize > 0, however,
 409          * else the door code acts as if no response was
 410          * expected and doesn't pass the data to us.
 411          */
 412         da.data_ptr = (char *)abuf;
 413         da.data_size = absz;
 414         da.desc_ptr = NULL;
 415         da.desc_num = 0;
 416         da.rbuf = NULL;
 417         da.rsize = 1;
 418 
 419 retry:
 420         mutex_enter(&mountd_lock);
 421         dh = mountd_dh;
 422         if (dh != NULL)
 423                 door_ki_hold(dh);
 424         mutex_exit(&mountd_lock);
 425 
 426         if (dh == NULL) {
 427                 /*
 428                  * The rendezvous point has not been established yet!
 429                  * This could mean that either mountd(1m) has not yet
 430                  * been started or that _this_ routine nuked the door
 431                  * handle after receiving an EINTR for a REVOKED door.
 432                  *
 433                  * Returning NFSAUTH_DROP will cause the NFS client
 434                  * to retransmit the request, so let's try to be more
 435                  * rescillient and attempt for ntries before we bail.
 436                  */
 437                 if (++ntries % NFSAUTH_DR_TRYCNT) {
 438                         delay(hz);
 439                         goto retry;
 440                 }
 441 
 442                 kmem_free(abuf, absz);
 443 
 444                 sys_log("nfsauth: mountd has not established door");
 445                 *access = NFSAUTH_DROP;
 446                 return (FALSE);
 447         }
 448 
 449         ntries = 0;
 450 
 451         /*
 452          * Now that we've got what we need, place the call.
 453          */
 454         switch (door_ki_upcall_limited(dh, &da, NULL, SIZE_MAX, 0)) {
 455         case 0:                         /* Success */
 456                 door_ki_rele(dh);
 457 
 458                 if (da.data_ptr == NULL && da.data_size == 0) {
 459                         /*
 460                          * The door_return that contained the data
 461                          * failed! We're here because of the 2nd
 462                          * door_return (w/o data) such that we can
 463                          * get control of the thread (and exit
 464                          * gracefully).
 465                          */
 466                         DTRACE_PROBE1(nfsserv__func__nfsauth__door__nil,
 467                             door_arg_t *, &da);
 468                         goto fail;
 469                 }
 470 
 471                 break;
 472 
 473         case EAGAIN:
 474                 /*
 475                  * Server out of resources; back off for a bit
 476                  */
 477                 door_ki_rele(dh);
 478                 delay(hz);
 479                 goto retry;
 480                 /* NOTREACHED */
 481 
 482         case EINTR:
 483                 if (!door_ki_info(dh, &di)) {
 484                         door_ki_rele(dh);
 485 
 486                         if (di.di_attributes & DOOR_REVOKED) {
 487                                 /*
 488                                  * The server barfed and revoked
 489                                  * the (existing) door on us; we
 490                                  * want to wait to give smf(5) a
 491                                  * chance to restart mountd(1m)
 492                                  * and establish a new door handle.
 493                                  */
 494                                 mutex_enter(&mountd_lock);
 495                                 if (dh == mountd_dh) {
 496                                         door_ki_rele(mountd_dh);
 497                                         mountd_dh = NULL;
 498                                 }
 499                                 mutex_exit(&mountd_lock);
 500                                 delay(hz);
 501                                 goto retry;
 502                         }
 503                         /*
 504                          * If the door was _not_ revoked on us,
 505                          * then more than likely we took an INTR,
 506                          * so we need to fail the operation.
 507                          */
 508                         goto fail;
 509                 }
 510                 /*
 511                  * The only failure that can occur from getting
 512                  * the door info is EINVAL, so we let the code
 513                  * below handle it.
 514                  */
 515                 /* FALLTHROUGH */
 516 
 517         case EBADF:
 518         case EINVAL:
 519         default:
 520                 /*
 521                  * If we have a stale door handle, give smf a last
 522                  * chance to start it by sleeping for a little bit.
 523                  * If we're still hosed, we'll fail the call.
 524                  *
 525                  * Since we're going to reacquire the door handle
 526                  * upon the retry, we opt to sleep for a bit and
 527                  * _not_ to clear mountd_dh. If mountd restarted
 528                  * and was able to set mountd_dh, we should see
 529                  * the new instance; if not, we won't get caught
 530                  * up in the retry/DELAY loop.
 531                  */
 532                 door_ki_rele(dh);
 533                 if (!last) {
 534                         delay(hz);
 535                         last++;
 536                         goto retry;
 537                 }
 538                 sys_log("nfsauth: stale mountd door handle");
 539                 goto fail;
 540         }
 541 
 542         ASSERT(da.rbuf != NULL);
 543 
 544         /*
 545          * No door errors encountered; setup the XDR stream for decoding
 546          * the results. If we fail to decode the results, we've got no
 547          * other recourse than to fail the request.
 548          */
 549         xdrmem_create(&xdrs, da.rbuf, da.rsize, XDR_DECODE);
 550         if (!xdr_nfsauth_res(&xdrs, &res)) {
 551                 xdr_free(xdr_nfsauth_res, (char *)&res);
 552                 XDR_DESTROY(&xdrs);
 553                 kmem_free(da.rbuf, da.rsize);
 554                 goto fail;
 555         }
 556         XDR_DESTROY(&xdrs);
 557         kmem_free(da.rbuf, da.rsize);
 558 
 559         DTRACE_PROBE1(nfsserv__func__nfsauth__results, nfsauth_res_t *, &res);
 560         switch (res.stat) {
 561                 case NFSAUTH_DR_OKAY:
 562                         *access = res.ares.auth_perm;
 563                         *srv_uid = res.ares.auth_srv_uid;
 564                         *srv_gid = res.ares.auth_srv_gid;
 565 
 566                         if ((*srv_gids_cnt = res.ares.auth_srv_gids.len) != 0) {
 567                                 *srv_gids = kmem_alloc(*srv_gids_cnt *
 568                                     sizeof (gid_t), KM_SLEEP);
 569                                 bcopy(res.ares.auth_srv_gids.val, *srv_gids,
 570                                     *srv_gids_cnt * sizeof (gid_t));
 571                         } else {
 572                                 *srv_gids = NULL;
 573                         }
 574 
 575                         break;
 576 
 577                 case NFSAUTH_DR_EFAIL:
 578                 case NFSAUTH_DR_DECERR:
 579                 case NFSAUTH_DR_BADCMD:
 580                 default:
 581                         xdr_free(xdr_nfsauth_res, (char *)&res);
 582 fail:
 583                         *access = NFSAUTH_DENIED;
 584                         kmem_free(abuf, absz);
 585                         return (FALSE);
 586                         /* NOTREACHED */
 587         }
 588 
 589         xdr_free(xdr_nfsauth_res, (char *)&res);
 590         kmem_free(abuf, absz);
 591 
 592         return (TRUE);
 593 }
 594 
 595 static void
 596 nfsauth_refresh_thread(void)
 597 {
 598         refreshq_exi_node_t     *ren;
 599         refreshq_auth_node_t    *ran;
 600 
 601         struct exportinfo       *exi;
 602 
 603         int                     access;
 604         bool_t                  retrieval;
 605 
 606         callb_cpr_t             cprinfo;
 607 
 608         CALLB_CPR_INIT(&cprinfo, &refreshq_lock, callb_generic_cpr,
 609             "nfsauth_refresh");
 610 
 611         for (;;) {
 612                 mutex_enter(&refreshq_lock);
 613                 if (refreshq_thread_state != REFRESHQ_THREAD_RUNNING) {
 614                         /* Keep the hold on the lock! */
 615                         break;
 616                 }
 617 
 618                 ren = list_remove_head(&refreshq_queue);
 619                 if (ren == NULL) {
 620                         CALLB_CPR_SAFE_BEGIN(&cprinfo);
 621                         cv_wait(&refreshq_cv, &refreshq_lock);
 622                         CALLB_CPR_SAFE_END(&cprinfo, &refreshq_lock);
 623                         mutex_exit(&refreshq_lock);
 624                         continue;
 625                 }
 626                 mutex_exit(&refreshq_lock);
 627 
 628                 exi = ren->ren_exi;
 629                 ASSERT(exi != NULL);
 630 
 631                 /*
 632                  * Since the ren was removed from the refreshq_queue above,
 633                  * this is the only thread aware about the ren existence, so we
 634                  * have the exclusive ownership of it and we do not need to
 635                  * protect it by any lock.
 636                  */
 637                 while ((ran = list_remove_head(&ren->ren_authlist))) {
 638                         uid_t uid;
 639                         gid_t gid;
 640                         uint_t ngids;
 641                         gid_t *gids;
 642                         struct auth_cache *p = ran->ran_auth;
 643                         char *netid = ran->ran_netid;
 644 
 645                         ASSERT(p != NULL);
 646                         ASSERT(netid != NULL);
 647 
 648                         kmem_free(ran, sizeof (refreshq_auth_node_t));
 649 
 650                         mutex_enter(&p->auth_lock);
 651 
 652                         /*
 653                          * Once the entry goes INVALID, it can not change
 654                          * state.
 655                          *
 656                          * No need to refresh entries also in a case we are
 657                          * just shutting down.
 658                          *
 659                          * In general, there is no need to hold the
 660                          * refreshq_lock to test the refreshq_thread_state.  We
 661                          * do hold it at other places because there is some
 662                          * related thread synchronization (or some other tasks)
 663                          * close to the refreshq_thread_state check.
 664                          *
 665                          * The check for the refreshq_thread_state value here
 666                          * is purely advisory to allow the faster
 667                          * nfsauth_refresh_thread() shutdown.  In a case we
 668                          * will miss such advisory, nothing catastrophic
 669                          * happens: we will just spin longer here before the
 670                          * shutdown.
 671                          */
 672                         if (p->auth_state == NFS_AUTH_INVALID ||
 673                             refreshq_thread_state != REFRESHQ_THREAD_RUNNING) {
 674                                 mutex_exit(&p->auth_lock);
 675 
 676                                 if (p->auth_state == NFS_AUTH_INVALID)
 677                                         nfsauth_free_node(p);
 678 
 679                                 strfree(netid);
 680 
 681                                 continue;
 682                         }
 683 
 684                         /*
 685                          * Make sure the state is valid.  Note that once we
 686                          * change the state to NFS_AUTH_REFRESHING, no other
 687                          * thread will be able to work on this entry.
 688                          */
 689                         ASSERT(p->auth_state == NFS_AUTH_STALE);
 690 
 691                         p->auth_state = NFS_AUTH_REFRESHING;
 692                         mutex_exit(&p->auth_lock);
 693 
 694                         DTRACE_PROBE2(nfsauth__debug__cache__refresh,
 695                             struct exportinfo *, exi,
 696                             struct auth_cache *, p);
 697 
 698                         /*
 699                          * The first caching of the access rights
 700                          * is done with the netid pulled out of the
 701                          * request from the client. All subsequent
 702                          * users of the cache may or may not have
 703                          * the same netid. It doesn't matter. So
 704                          * when we refresh, we simply use the netid
 705                          * of the request which triggered the
 706                          * refresh attempt.
 707                          */
 708                         retrieval = nfsauth_retrieve(exi, netid,
 709                             p->auth_flavor, &p->auth_clnt->authc_addr, &access,
 710                             p->auth_clnt_cred, &uid, &gid, &ngids, &gids);
 711 
 712                         /*
 713                          * This can only be set in one other place
 714                          * and the state has to be NFS_AUTH_FRESH.
 715                          */
 716                         strfree(netid);
 717 
 718                         mutex_enter(&p->auth_lock);
 719                         if (p->auth_state == NFS_AUTH_INVALID) {
 720                                 mutex_exit(&p->auth_lock);
 721                                 nfsauth_free_node(p);
 722                                 if (retrieval == TRUE)
 723                                         kmem_free(gids, ngids * sizeof (gid_t));
 724                         } else {
 725                                 /*
 726                                  * If we got an error, do not reset the
 727                                  * time. This will cause the next access
 728                                  * check for the client to reschedule this
 729                                  * node.
 730                                  */
 731                                 if (retrieval == TRUE) {
 732                                         p->auth_access = access;
 733 
 734                                         p->auth_srv_uid = uid;
 735                                         p->auth_srv_gid = gid;
 736                                         kmem_free(p->auth_srv_gids,
 737                                             p->auth_srv_ngids * sizeof (gid_t));
 738                                         p->auth_srv_ngids = ngids;
 739                                         p->auth_srv_gids = gids;
 740 
 741                                         p->auth_freshness = gethrestime_sec();
 742                                 }
 743                                 p->auth_state = NFS_AUTH_FRESH;
 744 
 745                                 cv_broadcast(&p->auth_cv);
 746                                 mutex_exit(&p->auth_lock);
 747                         }
 748                 }
 749 
 750                 list_destroy(&ren->ren_authlist);
 751                 exi_rele(ren->ren_exi);
 752                 kmem_free(ren, sizeof (refreshq_exi_node_t));
 753         }
 754 
 755         refreshq_thread_state = REFRESHQ_THREAD_HALTED;
 756         cv_broadcast(&refreshq_cv);
 757         CALLB_CPR_EXIT(&cprinfo);
 758         zthread_exit();
 759 }
 760 
 761 int
 762 nfsauth_cache_clnt_compar(const void *v1, const void *v2)
 763 {
 764         int c;
 765 
 766         const struct auth_cache_clnt *a1 = (const struct auth_cache_clnt *)v1;
 767         const struct auth_cache_clnt *a2 = (const struct auth_cache_clnt *)v2;
 768 
 769         if (a1->authc_addr.len < a2->authc_addr.len)
 770                 return (-1);
 771         if (a1->authc_addr.len > a2->authc_addr.len)
 772                 return (1);
 773 
 774         c = memcmp(a1->authc_addr.buf, a2->authc_addr.buf, a1->authc_addr.len);
 775         if (c < 0)
 776                 return (-1);
 777         if (c > 0)
 778                 return (1);
 779 
 780         return (0);
 781 }
 782 
 783 static int
 784 nfsauth_cache_compar(const void *v1, const void *v2)
 785 {
 786         int c;
 787 
 788         const struct auth_cache *a1 = (const struct auth_cache *)v1;
 789         const struct auth_cache *a2 = (const struct auth_cache *)v2;
 790 
 791         if (a1->auth_flavor < a2->auth_flavor)
 792                 return (-1);
 793         if (a1->auth_flavor > a2->auth_flavor)
 794                 return (1);
 795 
 796         if (crgetuid(a1->auth_clnt_cred) < crgetuid(a2->auth_clnt_cred))
 797                 return (-1);
 798         if (crgetuid(a1->auth_clnt_cred) > crgetuid(a2->auth_clnt_cred))
 799                 return (1);
 800 
 801         if (crgetgid(a1->auth_clnt_cred) < crgetgid(a2->auth_clnt_cred))
 802                 return (-1);
 803         if (crgetgid(a1->auth_clnt_cred) > crgetgid(a2->auth_clnt_cred))
 804                 return (1);
 805 
 806         if (crgetngroups(a1->auth_clnt_cred) < crgetngroups(a2->auth_clnt_cred))
 807                 return (-1);
 808         if (crgetngroups(a1->auth_clnt_cred) > crgetngroups(a2->auth_clnt_cred))
 809                 return (1);
 810 
 811         c = memcmp(crgetgroups(a1->auth_clnt_cred),
 812             crgetgroups(a2->auth_clnt_cred), crgetngroups(a1->auth_clnt_cred));
 813         if (c < 0)
 814                 return (-1);
 815         if (c > 0)
 816                 return (1);
 817 
 818         return (0);
 819 }
 820 
 821 /*
 822  * Get the access information from the cache or callup to the mountd
 823  * to get and cache the access information in the kernel.
 824  */
 825 static int
 826 nfsauth_cache_get(struct exportinfo *exi, struct svc_req *req, int flavor,
 827     cred_t *cr, uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids)
 828 {
 829         struct netbuf           *taddrmask;
 830         struct netbuf           addr;   /* temporary copy of client's address */
 831         const struct netbuf     *claddr;
 832         avl_tree_t              *tree;
 833         struct auth_cache       ac;     /* used as a template for avl_find() */
 834         struct auth_cache_clnt  *c;
 835         struct auth_cache_clnt  acc;    /* used as a template for avl_find() */
 836         struct auth_cache       *p = NULL;
 837         int                     access;
 838 
 839         uid_t                   tmpuid;
 840         gid_t                   tmpgid;
 841         uint_t                  tmpngids;
 842         gid_t                   *tmpgids;
 843 
 844         avl_index_t             where;  /* used for avl_find()/avl_insert() */
 845 
 846         ASSERT(cr != NULL);
 847 
 848         /*
 849          * Now check whether this client already
 850          * has an entry for this flavor in the cache
 851          * for this export.
 852          * Get the caller's address, mask off the
 853          * parts of the address that do not identify
 854          * the host (port number, etc), and then hash
 855          * it to find the chain of cache entries.
 856          */
 857 
 858         claddr = svc_getrpccaller(req->rq_xprt);
 859         addr = *claddr;
 860         addr.buf = kmem_alloc(addr.maxlen, KM_SLEEP);
 861         bcopy(claddr->buf, addr.buf, claddr->len);
 862 
 863         SVC_GETADDRMASK(req->rq_xprt, SVC_TATTR_ADDRMASK, (void **)&taddrmask);
 864         ASSERT(taddrmask != NULL);
 865         addrmask(&addr, taddrmask);
 866 
 867         ac.auth_flavor = flavor;
 868         ac.auth_clnt_cred = crdup(cr);
 869 
 870         acc.authc_addr = addr;
 871 
 872         tree = exi->exi_cache[hash(&addr)];
 873 
 874         rw_enter(&exi->exi_cache_lock, RW_READER);
 875         c = (struct auth_cache_clnt *)avl_find(tree, &acc, NULL);
 876 
 877         if (c == NULL) {
 878                 struct auth_cache_clnt *nc;
 879 
 880                 rw_exit(&exi->exi_cache_lock);
 881 
 882                 nc = kmem_alloc(sizeof (*nc), KM_NOSLEEP | KM_NORMALPRI);
 883                 if (nc == NULL)
 884                         goto retrieve;
 885 
 886                 /*
 887                  * Initialize the new auth_cache_clnt
 888                  */
 889                 nc->authc_addr = addr;
 890                 nc->authc_addr.buf = kmem_alloc(addr.maxlen,
 891                     KM_NOSLEEP | KM_NORMALPRI);
 892                 if (addr.maxlen != 0 && nc->authc_addr.buf == NULL) {
 893                         kmem_free(nc, sizeof (*nc));
 894                         goto retrieve;
 895                 }
 896                 bcopy(addr.buf, nc->authc_addr.buf, addr.len);
 897                 rw_init(&nc->authc_lock, NULL, RW_DEFAULT, NULL);
 898                 avl_create(&nc->authc_tree, nfsauth_cache_compar,
 899                     sizeof (struct auth_cache),
 900                     offsetof(struct auth_cache, auth_link));
 901 
 902                 rw_enter(&exi->exi_cache_lock, RW_WRITER);
 903                 c = (struct auth_cache_clnt *)avl_find(tree, &acc, &where);
 904                 if (c == NULL) {
 905                         avl_insert(tree, nc, where);
 906                         rw_downgrade(&exi->exi_cache_lock);
 907                         c = nc;
 908                 } else {
 909                         rw_downgrade(&exi->exi_cache_lock);
 910 
 911                         avl_destroy(&nc->authc_tree);
 912                         rw_destroy(&nc->authc_lock);
 913                         kmem_free(nc->authc_addr.buf, nc->authc_addr.maxlen);
 914                         kmem_free(nc, sizeof (*nc));
 915                 }
 916         }
 917 
 918         ASSERT(c != NULL);
 919 
 920         rw_enter(&c->authc_lock, RW_READER);
 921         p = (struct auth_cache *)avl_find(&c->authc_tree, &ac, NULL);
 922 
 923         if (p == NULL) {
 924                 struct auth_cache *np;
 925 
 926                 rw_exit(&c->authc_lock);
 927 
 928                 np = kmem_cache_alloc(exi_cache_handle,
 929                     KM_NOSLEEP | KM_NORMALPRI);
 930                 if (np == NULL) {
 931                         rw_exit(&exi->exi_cache_lock);
 932                         goto retrieve;
 933                 }
 934 
 935                 /*
 936                  * Initialize the new auth_cache
 937                  */
 938                 np->auth_clnt = c;
 939                 np->auth_flavor = flavor;
 940                 np->auth_clnt_cred = ac.auth_clnt_cred;
 941                 np->auth_srv_ngids = 0;
 942                 np->auth_srv_gids = NULL;
 943                 np->auth_time = np->auth_freshness = gethrestime_sec();
 944                 np->auth_state = NFS_AUTH_NEW;
 945                 mutex_init(&np->auth_lock, NULL, MUTEX_DEFAULT, NULL);
 946                 cv_init(&np->auth_cv, NULL, CV_DEFAULT, NULL);
 947 
 948                 rw_enter(&c->authc_lock, RW_WRITER);
 949                 rw_exit(&exi->exi_cache_lock);
 950 
 951                 p = (struct auth_cache *)avl_find(&c->authc_tree, &ac, &where);
 952                 if (p == NULL) {
 953                         avl_insert(&c->authc_tree, np, where);
 954                         rw_downgrade(&c->authc_lock);
 955                         p = np;
 956                 } else {
 957                         rw_downgrade(&c->authc_lock);
 958 
 959                         cv_destroy(&np->auth_cv);
 960                         mutex_destroy(&np->auth_lock);
 961                         crfree(ac.auth_clnt_cred);
 962                         kmem_cache_free(exi_cache_handle, np);
 963                 }
 964         } else {
 965                 rw_exit(&exi->exi_cache_lock);
 966                 crfree(ac.auth_clnt_cred);
 967         }
 968 
 969         mutex_enter(&p->auth_lock);
 970         rw_exit(&c->authc_lock);
 971 
 972         /*
 973          * If the entry is in the WAITING state then some other thread is just
 974          * retrieving the required info.  The entry was either NEW, or the list
 975          * of client's supplemental groups is going to be changed (either by
 976          * this thread, or by some other thread).  We need to wait until the
 977          * nfsauth_retrieve() is done.
 978          */
 979         while (p->auth_state == NFS_AUTH_WAITING)
 980                 cv_wait(&p->auth_cv, &p->auth_lock);
 981 
 982         /*
 983          * Here the entry cannot be in WAITING or INVALID state.
 984          */
 985         ASSERT(p->auth_state != NFS_AUTH_WAITING);
 986         ASSERT(p->auth_state != NFS_AUTH_INVALID);
 987 
 988         /*
 989          * If the cache entry is not valid yet, we need to retrieve the
 990          * info ourselves.
 991          */
 992         if (p->auth_state == NFS_AUTH_NEW) {
 993                 bool_t res;
 994                 /*
 995                  * NFS_AUTH_NEW is the default output auth_state value in a
 996                  * case we failed somewhere below.
 997                  */
 998                 auth_state_t state = NFS_AUTH_NEW;
 999 
1000                 p->auth_state = NFS_AUTH_WAITING;
1001                 mutex_exit(&p->auth_lock);
1002                 kmem_free(addr.buf, addr.maxlen);
1003                 addr = p->auth_clnt->authc_addr;
1004 
1005                 atomic_inc_uint(&nfsauth_cache_miss);
1006 
1007                 res = nfsauth_retrieve(exi, svc_getnetid(req->rq_xprt), flavor,
1008                     &addr, &access, cr, &tmpuid, &tmpgid, &tmpngids, &tmpgids);
1009 
1010                 p->auth_access = access;
1011                 p->auth_time = p->auth_freshness = gethrestime_sec();
1012 
1013                 if (res == TRUE) {
1014                         if (uid != NULL)
1015                                 *uid = tmpuid;
1016                         if (gid != NULL)
1017                                 *gid = tmpgid;
1018                         if (ngids != NULL && gids != NULL) {
1019                                 *ngids = tmpngids;
1020                                 *gids = tmpgids;
1021 
1022                                 /*
1023                                  * We need a copy of gids for the
1024                                  * auth_cache entry
1025                                  */
1026                                 tmpgids = kmem_alloc(tmpngids * sizeof (gid_t),
1027                                     KM_NOSLEEP | KM_NORMALPRI);
1028                                 if (tmpgids != NULL)
1029                                         bcopy(*gids, tmpgids,
1030                                             tmpngids * sizeof (gid_t));
1031                         }
1032 
1033                         if (tmpgids != NULL || tmpngids == 0) {
1034                                 p->auth_srv_uid = tmpuid;
1035                                 p->auth_srv_gid = tmpgid;
1036                                 p->auth_srv_ngids = tmpngids;
1037                                 p->auth_srv_gids = tmpgids;
1038 
1039                                 state = NFS_AUTH_FRESH;
1040                         }
1041                 }
1042 
1043                 /*
1044                  * Set the auth_state and notify waiters.
1045                  */
1046                 mutex_enter(&p->auth_lock);
1047                 p->auth_state = state;
1048                 cv_broadcast(&p->auth_cv);
1049                 mutex_exit(&p->auth_lock);
1050         } else {
1051                 uint_t nach;
1052                 time_t refresh;
1053 
1054                 refresh = gethrestime_sec() - p->auth_freshness;
1055 
1056                 p->auth_time = gethrestime_sec();
1057 
1058                 if (uid != NULL)
1059                         *uid = p->auth_srv_uid;
1060                 if (gid != NULL)
1061                         *gid = p->auth_srv_gid;
1062                 if (ngids != NULL && gids != NULL) {
1063                         if ((*ngids = p->auth_srv_ngids) != 0) {
1064                                 size_t sz = *ngids * sizeof (gid_t);
1065                                 *gids = kmem_alloc(sz, KM_SLEEP);
1066                                 bcopy(p->auth_srv_gids, *gids, sz);
1067                         } else {
1068                                 *gids = NULL;
1069                         }
1070                 }
1071 
1072                 access = p->auth_access;
1073 
1074                 if ((refresh > NFSAUTH_CACHE_REFRESH) &&
1075                     p->auth_state == NFS_AUTH_FRESH) {
1076                         refreshq_auth_node_t *ran;
1077                         uint_t nacr;
1078 
1079                         p->auth_state = NFS_AUTH_STALE;
1080                         mutex_exit(&p->auth_lock);
1081 
1082                         nacr = atomic_inc_uint_nv(&nfsauth_cache_refresh);
1083                         DTRACE_PROBE3(nfsauth__debug__cache__stale,
1084                             struct exportinfo *, exi,
1085                             struct auth_cache *, p,
1086                             uint_t, nacr);
1087 
1088                         ran = kmem_alloc(sizeof (refreshq_auth_node_t),
1089                             KM_SLEEP);
1090                         ran->ran_auth = p;
1091                         ran->ran_netid = strdup(svc_getnetid(req->rq_xprt));
1092 
1093                         mutex_enter(&refreshq_lock);
1094                         /*
1095                          * We should not add a work queue
1096                          * item if the thread is not
1097                          * accepting them.
1098                          */
1099                         if (refreshq_thread_state == REFRESHQ_THREAD_RUNNING) {
1100                                 refreshq_exi_node_t *ren;
1101 
1102                                 /*
1103                                  * Is there an existing exi_list?
1104                                  */
1105                                 for (ren = list_head(&refreshq_queue);
1106                                     ren != NULL;
1107                                     ren = list_next(&refreshq_queue, ren)) {
1108                                         if (ren->ren_exi == exi) {
1109                                                 list_insert_tail(
1110                                                     &ren->ren_authlist, ran);
1111                                                 break;
1112                                         }
1113                                 }
1114 
1115                                 if (ren == NULL) {
1116                                         ren = kmem_alloc(
1117                                             sizeof (refreshq_exi_node_t),
1118                                             KM_SLEEP);
1119 
1120                                         exi_hold(exi);
1121                                         ren->ren_exi = exi;
1122 
1123                                         list_create(&ren->ren_authlist,
1124                                             sizeof (refreshq_auth_node_t),
1125                                             offsetof(refreshq_auth_node_t,
1126                                             ran_node));
1127 
1128                                         list_insert_tail(&ren->ren_authlist,
1129                                             ran);
1130                                         list_insert_tail(&refreshq_queue, ren);
1131                                 }
1132 
1133                                 cv_broadcast(&refreshq_cv);
1134                         } else {
1135                                 strfree(ran->ran_netid);
1136                                 kmem_free(ran, sizeof (refreshq_auth_node_t));
1137                         }
1138 
1139                         mutex_exit(&refreshq_lock);
1140                 } else {
1141                         mutex_exit(&p->auth_lock);
1142                 }
1143 
1144                 nach = atomic_inc_uint_nv(&nfsauth_cache_hit);
1145                 DTRACE_PROBE2(nfsauth__debug__cache__hit,
1146                     uint_t, nach,
1147                     time_t, refresh);
1148 
1149                 kmem_free(addr.buf, addr.maxlen);
1150         }
1151 
1152         return (access);
1153 
1154 retrieve:
1155         crfree(ac.auth_clnt_cred);
1156 
1157         /*
1158          * Retrieve the required data without caching.
1159          */
1160 
1161         ASSERT(p == NULL);
1162 
1163         atomic_inc_uint(&nfsauth_cache_miss);
1164 
1165         if (nfsauth_retrieve(exi, svc_getnetid(req->rq_xprt), flavor, &addr,
1166             &access, cr, &tmpuid, &tmpgid, &tmpngids, &tmpgids)) {
1167                 if (uid != NULL)
1168                         *uid = tmpuid;
1169                 if (gid != NULL)
1170                         *gid = tmpgid;
1171                 if (ngids != NULL && gids != NULL) {
1172                         *ngids = tmpngids;
1173                         *gids = tmpgids;
1174                 } else {
1175                         kmem_free(tmpgids, tmpngids * sizeof (gid_t));
1176                 }
1177         }
1178 
1179         kmem_free(addr.buf, addr.maxlen);
1180 
1181         return (access);
1182 }
1183 
1184 /*
1185  * Check if the requesting client has access to the filesystem with
1186  * a given nfs flavor number which is an explicitly shared flavor.
1187  */
1188 int
1189 nfsauth4_secinfo_access(struct exportinfo *exi, struct svc_req *req,
1190     int flavor, int perm, cred_t *cr)
1191 {
1192         int access;
1193 
1194         if (! (perm & M_4SEC_EXPORTED)) {
1195                 return (NFSAUTH_DENIED);
1196         }
1197 
1198         /*
1199          * Optimize if there are no lists
1200          */
1201         if ((perm & (M_ROOT | M_NONE | M_MAP)) == 0) {
1202                 perm &= ~M_4SEC_EXPORTED;
1203                 if (perm == M_RO)
1204                         return (NFSAUTH_RO);
1205                 if (perm == M_RW)
1206                         return (NFSAUTH_RW);
1207         }
1208 
1209         access = nfsauth_cache_get(exi, req, flavor, cr, NULL, NULL, NULL,
1210             NULL);
1211 
1212         return (access);
1213 }
1214 
1215 int
1216 nfsauth_access(struct exportinfo *exi, struct svc_req *req, cred_t *cr,
1217     uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids)
1218 {
1219         int access, mapaccess;
1220         struct secinfo *sp;
1221         int i, flavor, perm;
1222         int authnone_entry = -1;
1223 
1224         /*
1225          * By default root is mapped to anonymous user.
1226          * This might get overriden later in nfsauth_cache_get().
1227          */
1228         if (crgetuid(cr) == 0) {
1229                 if (uid != NULL)
1230                         *uid = exi->exi_export.ex_anon;
1231                 if (gid != NULL)
1232                         *gid = exi->exi_export.ex_anon;
1233         } else {
1234                 if (uid != NULL)
1235                         *uid = crgetuid(cr);
1236                 if (gid != NULL)
1237                         *gid = crgetgid(cr);
1238         }
1239 
1240         if (ngids != NULL)
1241                 *ngids = 0;
1242         if (gids != NULL)
1243                 *gids = NULL;
1244 
1245         /*
1246          *  Get the nfs flavor number from xprt.
1247          */
1248         flavor = (int)(uintptr_t)req->rq_xprt->xp_cookie;
1249 
1250         /*
1251          * First check the access restrictions on the filesystem.  If
1252          * there are no lists associated with this flavor then there's no
1253          * need to make an expensive call to the nfsauth service or to
1254          * cache anything.
1255          */
1256 
1257         sp = exi->exi_export.ex_secinfo;
1258         for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
1259                 if (flavor != sp[i].s_secinfo.sc_nfsnum) {
1260                         if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE)
1261                                 authnone_entry = i;
1262                         continue;
1263                 }
1264                 break;
1265         }
1266 
1267         mapaccess = 0;
1268 
1269         if (i >= exi->exi_export.ex_seccnt) {
1270                 /*
1271                  * Flavor not found, but use AUTH_NONE if it exists
1272                  */
1273                 if (authnone_entry == -1)
1274                         return (NFSAUTH_DENIED);
1275                 flavor = AUTH_NONE;
1276                 mapaccess = NFSAUTH_MAPNONE;
1277                 i = authnone_entry;
1278         }
1279 
1280         /*
1281          * If the flavor is in the ex_secinfo list, but not an explicitly
1282          * shared flavor by the user, it is a result of the nfsv4 server
1283          * namespace setup. We will grant an RO permission similar for
1284          * a pseudo node except that this node is a shared one.
1285          *
1286          * e.g. flavor in (flavor) indicates that it is not explictly
1287          *      shared by the user:
1288          *
1289          *              /       (sys, krb5)
1290          *              |
1291          *              export  #share -o sec=sys (krb5)
1292          *              |
1293          *              secure  #share -o sec=krb5
1294          *
1295          *      In this case, when a krb5 request coming in to access
1296          *      /export, RO permission is granted.
1297          */
1298         if (!(sp[i].s_flags & M_4SEC_EXPORTED))
1299                 return (mapaccess | NFSAUTH_RO);
1300 
1301         /*
1302          * Optimize if there are no lists.
1303          * We cannot optimize for AUTH_SYS with NGRPS (16) supplemental groups.
1304          */
1305         perm = sp[i].s_flags;
1306         if ((perm & (M_ROOT | M_NONE | M_MAP)) == 0 && (ngroups_max <= NGRPS ||
1307             flavor != AUTH_SYS || crgetngroups(cr) < NGRPS)) {
1308                 perm &= ~M_4SEC_EXPORTED;
1309                 if (perm == M_RO)
1310                         return (mapaccess | NFSAUTH_RO);
1311                 if (perm == M_RW)
1312                         return (mapaccess | NFSAUTH_RW);
1313         }
1314 
1315         access = nfsauth_cache_get(exi, req, flavor, cr, uid, gid, ngids, gids);
1316 
1317         /*
1318          * For both NFSAUTH_DENIED and NFSAUTH_WRONGSEC we do not care about
1319          * the supplemental groups.
1320          */
1321         if (access & NFSAUTH_DENIED || access & NFSAUTH_WRONGSEC) {
1322                 if (ngids != NULL && gids != NULL) {
1323                         kmem_free(*gids, *ngids * sizeof (gid_t));
1324                         *ngids = 0;
1325                         *gids = NULL;
1326                 }
1327         }
1328 
1329         /*
1330          * Client's security flavor doesn't match with "ro" or
1331          * "rw" list. Try again using AUTH_NONE if present.
1332          */
1333         if ((access & NFSAUTH_WRONGSEC) && (flavor != AUTH_NONE)) {
1334                 /*
1335                  * Have we already encountered AUTH_NONE ?
1336                  */
1337                 if (authnone_entry != -1) {
1338                         mapaccess = NFSAUTH_MAPNONE;
1339                         access = nfsauth_cache_get(exi, req, AUTH_NONE, cr,
1340                             NULL, NULL, NULL, NULL);
1341                 } else {
1342                         /*
1343                          * Check for AUTH_NONE presence.
1344                          */
1345                         for (; i < exi->exi_export.ex_seccnt; i++) {
1346                                 if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE) {
1347                                         mapaccess = NFSAUTH_MAPNONE;
1348                                         access = nfsauth_cache_get(exi, req,
1349                                             AUTH_NONE, cr, NULL, NULL, NULL,
1350                                             NULL);
1351                                         break;
1352                                 }
1353                         }
1354                 }
1355         }
1356 
1357         if (access & NFSAUTH_DENIED)
1358                 access = NFSAUTH_DENIED;
1359 
1360         return (access | mapaccess);
1361 }
1362 
1363 static void
1364 nfsauth_free_clnt_node(struct auth_cache_clnt *p)
1365 {
1366         void *cookie = NULL;
1367         struct auth_cache *node;
1368 
1369         while ((node = avl_destroy_nodes(&p->authc_tree, &cookie)) != NULL)
1370                 nfsauth_free_node(node);
1371         avl_destroy(&p->authc_tree);
1372 
1373         kmem_free(p->authc_addr.buf, p->authc_addr.maxlen);
1374         rw_destroy(&p->authc_lock);
1375 
1376         kmem_free(p, sizeof (*p));
1377 }
1378 
1379 static void
1380 nfsauth_free_node(struct auth_cache *p)
1381 {
1382         crfree(p->auth_clnt_cred);
1383         kmem_free(p->auth_srv_gids, p->auth_srv_ngids * sizeof (gid_t));
1384         mutex_destroy(&p->auth_lock);
1385         cv_destroy(&p->auth_cv);
1386         kmem_cache_free(exi_cache_handle, p);
1387 }
1388 
1389 /*
1390  * Free the nfsauth cache for a given export
1391  */
1392 void
1393 nfsauth_cache_free(struct exportinfo *exi)
1394 {
1395         int i;
1396 
1397         /*
1398          * The only way we got here was with an exi_rele, which means that no
1399          * auth cache entry is being refreshed.
1400          */
1401 
1402         for (i = 0; i < AUTH_TABLESIZE; i++) {
1403                 avl_tree_t *tree = exi->exi_cache[i];
1404                 void *cookie = NULL;
1405                 struct auth_cache_clnt *node;
1406 
1407                 while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
1408                         nfsauth_free_clnt_node(node);
1409         }
1410 }
1411 
1412 /*
1413  * Called by the kernel memory allocator when
1414  * memory is low. Free unused cache entries.
1415  * If that's not enough, the VM system will
1416  * call again for some more.
1417  */
1418 /*ARGSUSED*/
1419 void
1420 exi_cache_reclaim(void *cdrarg)
1421 {
1422         int i;
1423         struct exportinfo *exi;
1424 
1425         rw_enter(&exported_lock, RW_READER);
1426 
1427         for (i = 0; i < EXPTABLESIZE; i++) {
1428                 for (exi = exptable[i]; exi; exi = exi->fid_hash.next) {
1429                         exi_cache_trim(exi);
1430                 }
1431         }
1432 
1433         rw_exit(&exported_lock);
1434 
1435         atomic_inc_uint(&nfsauth_cache_reclaim);
1436 }
1437 
1438 void
1439 exi_cache_trim(struct exportinfo *exi)
1440 {
1441         struct auth_cache_clnt *c;
1442         struct auth_cache_clnt *nextc;
1443         struct auth_cache *p;
1444         struct auth_cache *next;
1445         int i;
1446         time_t stale_time;
1447         avl_tree_t *tree;
1448 
1449         for (i = 0; i < AUTH_TABLESIZE; i++) {
1450                 tree = exi->exi_cache[i];
1451                 stale_time = gethrestime_sec() - NFSAUTH_CACHE_TRIM;
1452                 rw_enter(&exi->exi_cache_lock, RW_READER);
1453 
1454                 /*
1455                  * Free entries that have not been
1456                  * used for NFSAUTH_CACHE_TRIM seconds.
1457                  */
1458                 for (c = avl_first(tree); c != NULL; c = AVL_NEXT(tree, c)) {
1459                         /*
1460                          * We are being called by the kmem subsystem to reclaim
1461                          * memory so don't block if we can't get the lock.
1462                          */
1463                         if (rw_tryenter(&c->authc_lock, RW_WRITER) == 0) {
1464                                 exi_cache_auth_reclaim_failed++;
1465                                 rw_exit(&exi->exi_cache_lock);
1466                                 return;
1467                         }
1468 
1469                         for (p = avl_first(&c->authc_tree); p != NULL;
1470                             p = next) {
1471                                 next = AVL_NEXT(&c->authc_tree, p);
1472 
1473                                 ASSERT(p->auth_state != NFS_AUTH_INVALID);
1474 
1475                                 mutex_enter(&p->auth_lock);
1476 
1477                                 /*
1478                                  * We won't trim recently used and/or WAITING
1479                                  * entries.
1480                                  */
1481                                 if (p->auth_time > stale_time ||
1482                                     p->auth_state == NFS_AUTH_WAITING) {
1483                                         mutex_exit(&p->auth_lock);
1484                                         continue;
1485                                 }
1486 
1487                                 DTRACE_PROBE1(nfsauth__debug__trim__state,
1488                                     auth_state_t, p->auth_state);
1489 
1490                                 /*
1491                                  * STALE and REFRESHING entries needs to be
1492                                  * marked INVALID only because they are
1493                                  * referenced by some other structures or
1494                                  * threads.  They will be freed later.
1495                                  */
1496                                 if (p->auth_state == NFS_AUTH_STALE ||
1497                                     p->auth_state == NFS_AUTH_REFRESHING) {
1498                                         p->auth_state = NFS_AUTH_INVALID;
1499                                         mutex_exit(&p->auth_lock);
1500 
1501                                         avl_remove(&c->authc_tree, p);
1502                                 } else {
1503                                         mutex_exit(&p->auth_lock);
1504 
1505                                         avl_remove(&c->authc_tree, p);
1506                                         nfsauth_free_node(p);
1507                                 }
1508                         }
1509                         rw_exit(&c->authc_lock);
1510                 }
1511 
1512                 if (rw_tryupgrade(&exi->exi_cache_lock) == 0) {
1513                         rw_exit(&exi->exi_cache_lock);
1514                         exi_cache_clnt_reclaim_failed++;
1515                         continue;
1516                 }
1517 
1518                 for (c = avl_first(tree); c != NULL; c = nextc) {
1519                         nextc = AVL_NEXT(tree, c);
1520 
1521                         if (avl_is_empty(&c->authc_tree) == B_FALSE)
1522                                 continue;
1523 
1524                         avl_remove(tree, c);
1525 
1526                         nfsauth_free_clnt_node(c);
1527                 }
1528 
1529                 rw_exit(&exi->exi_cache_lock);
1530         }
1531 }