1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
  24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  25  * Copyright (c) 2014, 2017 by Delphix. All rights reserved.
  26  * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
  27  * Copyright 2017 Joyent, Inc.
  28  * Copyright 2017 RackTop Systems.
  29  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
  30  */
  31 
  32 /*
  33  * Routines to manage ZFS mounts.  We separate all the nasty routines that have
  34  * to deal with the OS.  The following functions are the main entry points --
  35  * they are used by mount and unmount and when changing a filesystem's
  36  * mountpoint.
  37  *
  38  *      zfs_is_mounted()
  39  *      zfs_mount()
  40  *      zfs_unmount()
  41  *      zfs_unmountall()
  42  *
  43  * This file also contains the functions used to manage sharing filesystems via
  44  * NFS and iSCSI:
  45  *
  46  *      zfs_is_shared()
  47  *      zfs_share()
  48  *      zfs_unshare()
  49  *
  50  *      zfs_is_shared_nfs()
  51  *      zfs_is_shared_smb()
  52  *      zfs_share_proto()
  53  *      zfs_shareall();
  54  *      zfs_unshare_nfs()
  55  *      zfs_unshare_smb()
  56  *      zfs_unshareall_nfs()
  57  *      zfs_unshareall_smb()
  58  *      zfs_unshareall()
  59  *      zfs_unshareall_bypath()
  60  *
  61  * The following functions are available for pool consumers, and will
  62  * mount/unmount and share/unshare all datasets within pool:
  63  *
  64  *      zpool_enable_datasets()
  65  *      zpool_disable_datasets()
  66  */
  67 
  68 #include <dirent.h>
  69 #include <dlfcn.h>
  70 #include <errno.h>
  71 #include <fcntl.h>
  72 #include <libgen.h>
  73 #include <libintl.h>
  74 #include <stdio.h>
  75 #include <stdlib.h>
  76 #include <strings.h>
  77 #include <unistd.h>
  78 #include <zone.h>
  79 #include <sys/mntent.h>
  80 #include <sys/mount.h>
  81 #include <sys/stat.h>
  82 #include <sys/statvfs.h>
  83 #include <sys/dsl_crypt.h>
  84 
  85 #include <libzfs.h>
  86 
  87 #include "libzfs_impl.h"
  88 #include "libzfs_taskq.h"
  89 
  90 #include <libshare.h>
  91 #include <sys/systeminfo.h>
  92 #define MAXISALEN       257     /* based on sysinfo(2) man page */
  93 
  94 static int mount_tq_nthr = 512; /* taskq threads for multi-threaded mounting */
  95 
  96 static void zfs_mount_task(void *);
  97 static int zfs_share_proto(zfs_handle_t *, zfs_share_proto_t *);
  98 zfs_share_type_t zfs_is_shared_proto(zfs_handle_t *, char **,
  99     zfs_share_proto_t);
 100 
 101 /*
 102  * The share protocols table must be in the same order as the zfs_share_proto_t
 103  * enum in libzfs_impl.h
 104  */
 105 typedef struct {
 106         zfs_prop_t p_prop;
 107         char *p_name;
 108         int p_share_err;
 109         int p_unshare_err;
 110 } proto_table_t;
 111 
 112 proto_table_t proto_table[PROTO_END] = {
 113         {ZFS_PROP_SHARENFS, "nfs", EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED},
 114         {ZFS_PROP_SHARESMB, "smb", EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED},
 115 };
 116 
 117 zfs_share_proto_t nfs_only[] = {
 118         PROTO_NFS,
 119         PROTO_END
 120 };
 121 
 122 zfs_share_proto_t smb_only[] = {
 123         PROTO_SMB,
 124         PROTO_END
 125 };
 126 zfs_share_proto_t share_all_proto[] = {
 127         PROTO_NFS,
 128         PROTO_SMB,
 129         PROTO_END
 130 };
 131 
 132 /*
 133  * Search the sharetab for the given mountpoint and protocol, returning
 134  * a zfs_share_type_t value.
 135  */
 136 static zfs_share_type_t
 137 is_shared(libzfs_handle_t *hdl, const char *mountpoint, zfs_share_proto_t proto)
 138 {
 139         char buf[MAXPATHLEN], *tab;
 140         char *ptr;
 141 
 142         if (hdl->libzfs_sharetab == NULL)
 143                 return (SHARED_NOT_SHARED);
 144 
 145         (void) fseek(hdl->libzfs_sharetab, 0, SEEK_SET);
 146 
 147         while (fgets(buf, sizeof (buf), hdl->libzfs_sharetab) != NULL) {
 148 
 149                 /* the mountpoint is the first entry on each line */
 150                 if ((tab = strchr(buf, '\t')) == NULL)
 151                         continue;
 152 
 153                 *tab = '\0';
 154                 if (strcmp(buf, mountpoint) == 0) {
 155                         /*
 156                          * the protocol field is the third field
 157                          * skip over second field
 158                          */
 159                         ptr = ++tab;
 160                         if ((tab = strchr(ptr, '\t')) == NULL)
 161                                 continue;
 162                         ptr = ++tab;
 163                         if ((tab = strchr(ptr, '\t')) == NULL)
 164                                 continue;
 165                         *tab = '\0';
 166                         if (strcmp(ptr,
 167                             proto_table[proto].p_name) == 0) {
 168                                 switch (proto) {
 169                                 case PROTO_NFS:
 170                                         return (SHARED_NFS);
 171                                 case PROTO_SMB:
 172                                         return (SHARED_SMB);
 173                                 default:
 174                                         return (0);
 175                                 }
 176                         }
 177                 }
 178         }
 179 
 180         return (SHARED_NOT_SHARED);
 181 }
 182 
 183 static boolean_t
 184 dir_is_empty_stat(const char *dirname)
 185 {
 186         struct stat st;
 187 
 188         /*
 189          * We only want to return false if the given path is a non empty
 190          * directory, all other errors are handled elsewhere.
 191          */
 192         if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) {
 193                 return (B_TRUE);
 194         }
 195 
 196         /*
 197          * An empty directory will still have two entries in it, one
 198          * entry for each of "." and "..".
 199          */
 200         if (st.st_size > 2) {
 201                 return (B_FALSE);
 202         }
 203 
 204         return (B_TRUE);
 205 }
 206 
 207 static boolean_t
 208 dir_is_empty_readdir(const char *dirname)
 209 {
 210         DIR *dirp;
 211         struct dirent64 *dp;
 212         int dirfd;
 213 
 214         if ((dirfd = openat(AT_FDCWD, dirname,
 215             O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) {
 216                 return (B_TRUE);
 217         }
 218 
 219         if ((dirp = fdopendir(dirfd)) == NULL) {
 220                 (void) close(dirfd);
 221                 return (B_TRUE);
 222         }
 223 
 224         while ((dp = readdir64(dirp)) != NULL) {
 225 
 226                 if (strcmp(dp->d_name, ".") == 0 ||
 227                     strcmp(dp->d_name, "..") == 0)
 228                         continue;
 229 
 230                 (void) closedir(dirp);
 231                 return (B_FALSE);
 232         }
 233 
 234         (void) closedir(dirp);
 235         return (B_TRUE);
 236 }
 237 
 238 /*
 239  * Returns true if the specified directory is empty.  If we can't open the
 240  * directory at all, return true so that the mount can fail with a more
 241  * informative error message.
 242  */
 243 static boolean_t
 244 dir_is_empty(const char *dirname)
 245 {
 246         struct statvfs64 st;
 247 
 248         /*
 249          * If the statvfs call fails or the filesystem is not a ZFS
 250          * filesystem, fall back to the slow path which uses readdir.
 251          */
 252         if ((statvfs64(dirname, &st) != 0) ||
 253             (strcmp(st.f_basetype, "zfs") != 0)) {
 254                 return (dir_is_empty_readdir(dirname));
 255         }
 256 
 257         /*
 258          * At this point, we know the provided path is on a ZFS
 259          * filesystem, so we can use stat instead of readdir to
 260          * determine if the directory is empty or not. We try to avoid
 261          * using readdir because that requires opening "dirname"; this
 262          * open file descriptor can potentially end up in a child
 263          * process if there's a concurrent fork, thus preventing the
 264          * zfs_mount() from otherwise succeeding (the open file
 265          * descriptor inherited by the child process will cause the
 266          * parent's mount to fail with EBUSY). The performance
 267          * implications of replacing the open, read, and close with a
 268          * single stat is nice; but is not the main motivation for the
 269          * added complexity.
 270          */
 271         return (dir_is_empty_stat(dirname));
 272 }
 273 
 274 /*
 275  * Checks to see if the mount is active.  If the filesystem is mounted, we fill
 276  * in 'where' with the current mountpoint, and return 1.  Otherwise, we return
 277  * 0.
 278  */
 279 boolean_t
 280 is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where)
 281 {
 282         struct mnttab entry;
 283 
 284         if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0)
 285                 return (B_FALSE);
 286 
 287         if (where != NULL)
 288                 *where = zfs_strdup(zfs_hdl, entry.mnt_mountp);
 289 
 290         return (B_TRUE);
 291 }
 292 
 293 boolean_t
 294 zfs_is_mounted(zfs_handle_t *zhp, char **where)
 295 {
 296         return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where));
 297 }
 298 
 299 /*
 300  * Returns true if the given dataset is mountable, false otherwise.  Returns the
 301  * mountpoint in 'buf'.
 302  */
 303 static boolean_t
 304 zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen,
 305     zprop_source_t *source)
 306 {
 307         char sourceloc[MAXNAMELEN];
 308         zprop_source_t sourcetype;
 309 
 310         if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type))
 311                 return (B_FALSE);
 312 
 313         verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen,
 314             &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0);
 315 
 316         if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 ||
 317             strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0)
 318                 return (B_FALSE);
 319 
 320         if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF)
 321                 return (B_FALSE);
 322 
 323         if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) &&
 324             getzoneid() == GLOBAL_ZONEID)
 325                 return (B_FALSE);
 326 
 327         if (source)
 328                 *source = sourcetype;
 329 
 330         return (B_TRUE);
 331 }
 332 
 333 /*
 334  * Mount the given filesystem.
 335  */
 336 int
 337 zfs_mount(zfs_handle_t *zhp, const char *options, int flags)
 338 {
 339         struct stat buf;
 340         char mountpoint[ZFS_MAXPROPLEN];
 341         char mntopts[MNT_LINE_MAX];
 342         libzfs_handle_t *hdl = zhp->zfs_hdl;
 343         uint64_t keystatus;
 344         int rc;
 345 
 346         if (options == NULL)
 347                 mntopts[0] = '\0';
 348         else
 349                 (void) strlcpy(mntopts, options, sizeof (mntopts));
 350 
 351         /*
 352          * If the pool is imported read-only then all mounts must be read-only
 353          */
 354         if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL))
 355                 flags |= MS_RDONLY;
 356 
 357         if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL))
 358                 return (0);
 359 
 360         /*
 361          * If the filesystem is encrypted the key must be loaded  in order to
 362          * mount. If the key isn't loaded, the MS_CRYPT flag decides whether
 363          * or not we attempt to load the keys. Note: we must call
 364          * zfs_refresh_properties() here since some callers of this function
 365          * (most notably zpool_enable_datasets()) may implicitly load our key
 366          * by loading the parent's key first.
 367          */
 368         if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
 369                 zfs_refresh_properties(zhp);
 370                 keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
 371 
 372                 /*
 373                  * If the key is unavailable and MS_CRYPT is set give the
 374                  * user a chance to enter the key. Otherwise just fail
 375                  * immediately.
 376                  */
 377                 if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) {
 378                         if (flags & MS_CRYPT) {
 379                                 rc = zfs_crypto_load_key(zhp, B_FALSE, NULL);
 380                                 if (rc != 0)
 381                                         return (rc);
 382                         } else {
 383                                 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
 384                                     "encryption key not loaded"));
 385                                 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
 386                                     dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
 387                                     mountpoint));
 388                         }
 389                 }
 390 
 391         }
 392 
 393         /* Create the directory if it doesn't already exist */
 394         if (lstat(mountpoint, &buf) != 0) {
 395                 if (mkdirp(mountpoint, 0755) != 0) {
 396                         zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
 397                             "failed to create mountpoint"));
 398                         return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
 399                             dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
 400                             mountpoint));
 401                 }
 402         }
 403 
 404         /*
 405          * Determine if the mountpoint is empty.  If so, refuse to perform the
 406          * mount.  We don't perform this check if MS_OVERLAY is specified, which
 407          * would defeat the point.  We also avoid this check if 'remount' is
 408          * specified.
 409          */
 410         if ((flags & MS_OVERLAY) == 0 &&
 411             strstr(mntopts, MNTOPT_REMOUNT) == NULL &&
 412             !dir_is_empty(mountpoint)) {
 413                 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
 414                     "directory is not empty"));
 415                 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
 416                     dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint));
 417         }
 418 
 419         /* perform the mount */
 420         if (mount(zfs_get_name(zhp), mountpoint, MS_OPTIONSTR | flags,
 421             MNTTYPE_ZFS, NULL, 0, mntopts, sizeof (mntopts)) != 0) {
 422                 /*
 423                  * Generic errors are nasty, but there are just way too many
 424                  * from mount(), and they're well-understood.  We pick a few
 425                  * common ones to improve upon.
 426                  */
 427                 if (errno == EBUSY) {
 428                         zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
 429                             "mountpoint or dataset is busy"));
 430                 } else if (errno == EPERM) {
 431                         zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
 432                             "Insufficient privileges"));
 433                 } else if (errno == ENOTSUP) {
 434                         char buf[256];
 435                         int spa_version;
 436 
 437                         VERIFY(zfs_spa_version(zhp, &spa_version) == 0);
 438                         (void) snprintf(buf, sizeof (buf),
 439                             dgettext(TEXT_DOMAIN, "Can't mount a version %lld "
 440                             "file system on a version %d pool. Pool must be"
 441                             " upgraded to mount this file system."),
 442                             (u_longlong_t)zfs_prop_get_int(zhp,
 443                             ZFS_PROP_VERSION), spa_version);
 444                         zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, buf));
 445                 } else {
 446                         zfs_error_aux(hdl, strerror(errno));
 447                 }
 448                 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
 449                     dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
 450                     zhp->zfs_name));
 451         }
 452 
 453         /* add the mounted entry into our cache */
 454         libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint,
 455             mntopts);
 456         return (0);
 457 }
 458 
 459 /*
 460  * Unmount a single filesystem.
 461  */
 462 static int
 463 unmount_one(libzfs_handle_t *hdl, const char *mountpoint, int flags)
 464 {
 465         if (umount2(mountpoint, flags) != 0) {
 466                 zfs_error_aux(hdl, strerror(errno));
 467                 return (zfs_error_fmt(hdl, EZFS_UMOUNTFAILED,
 468                     dgettext(TEXT_DOMAIN, "cannot unmount '%s'"),
 469                     mountpoint));
 470         }
 471 
 472         return (0);
 473 }
 474 
 475 /*
 476  * Unmount the given filesystem.
 477  */
 478 int
 479 zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags)
 480 {
 481         libzfs_handle_t *hdl = zhp->zfs_hdl;
 482         struct mnttab entry;
 483         char *mntpt = NULL;
 484 
 485         /* check to see if we need to unmount the filesystem */
 486         if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
 487             libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) {
 488                 /*
 489                  * mountpoint may have come from a call to
 490                  * getmnt/getmntany if it isn't NULL. If it is NULL,
 491                  * we know it comes from libzfs_mnttab_find which can
 492                  * then get freed later. We strdup it to play it safe.
 493                  */
 494                 if (mountpoint == NULL)
 495                         mntpt = zfs_strdup(hdl, entry.mnt_mountp);
 496                 else
 497                         mntpt = zfs_strdup(hdl, mountpoint);
 498 
 499                 /*
 500                  * Unshare and unmount the filesystem
 501                  */
 502                 if (zfs_unshare_proto(zhp, mntpt, share_all_proto) != 0)
 503                         return (-1);
 504 
 505                 if (unmount_one(hdl, mntpt, flags) != 0) {
 506                         free(mntpt);
 507                         (void) zfs_shareall(zhp);
 508                         return (-1);
 509                 }
 510                 libzfs_mnttab_remove(hdl, zhp->zfs_name);
 511                 free(mntpt);
 512         }
 513 
 514         return (0);
 515 }
 516 
 517 /*
 518  * Unmount this filesystem and any children inheriting the mountpoint property.
 519  * To do this, just act like we're changing the mountpoint property, but don't
 520  * remount the filesystems afterwards.
 521  */
 522 int
 523 zfs_unmountall(zfs_handle_t *zhp, int flags)
 524 {
 525         prop_changelist_t *clp;
 526         int ret;
 527 
 528         clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, 0, flags);
 529         if (clp == NULL)
 530                 return (-1);
 531 
 532         ret = changelist_prefix(clp);
 533         changelist_free(clp);
 534 
 535         return (ret);
 536 }
 537 
 538 boolean_t
 539 zfs_is_shared(zfs_handle_t *zhp)
 540 {
 541         zfs_share_type_t rc = 0;
 542         zfs_share_proto_t *curr_proto;
 543 
 544         if (ZFS_IS_VOLUME(zhp))
 545                 return (B_FALSE);
 546 
 547         for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
 548             curr_proto++)
 549                 rc |= zfs_is_shared_proto(zhp, NULL, *curr_proto);
 550 
 551         return (rc ? B_TRUE : B_FALSE);
 552 }
 553 
 554 int
 555 zfs_share(zfs_handle_t *zhp)
 556 {
 557         assert(!ZFS_IS_VOLUME(zhp));
 558         return (zfs_share_proto(zhp, share_all_proto));
 559 }
 560 
 561 int
 562 zfs_unshare(zfs_handle_t *zhp)
 563 {
 564         assert(!ZFS_IS_VOLUME(zhp));
 565         return (zfs_unshareall(zhp));
 566 }
 567 
 568 /*
 569  * Check to see if the filesystem is currently shared.
 570  */
 571 zfs_share_type_t
 572 zfs_is_shared_proto(zfs_handle_t *zhp, char **where, zfs_share_proto_t proto)
 573 {
 574         char *mountpoint;
 575         zfs_share_type_t rc;
 576 
 577         if (!zfs_is_mounted(zhp, &mountpoint))
 578                 return (SHARED_NOT_SHARED);
 579 
 580         if ((rc = is_shared(zhp->zfs_hdl, mountpoint, proto))
 581             != SHARED_NOT_SHARED) {
 582                 if (where != NULL)
 583                         *where = mountpoint;
 584                 else
 585                         free(mountpoint);
 586                 return (rc);
 587         } else {
 588                 free(mountpoint);
 589                 return (SHARED_NOT_SHARED);
 590         }
 591 }
 592 
 593 boolean_t
 594 zfs_is_shared_nfs(zfs_handle_t *zhp, char **where)
 595 {
 596         return (zfs_is_shared_proto(zhp, where,
 597             PROTO_NFS) != SHARED_NOT_SHARED);
 598 }
 599 
 600 boolean_t
 601 zfs_is_shared_smb(zfs_handle_t *zhp, char **where)
 602 {
 603         return (zfs_is_shared_proto(zhp, where,
 604             PROTO_SMB) != SHARED_NOT_SHARED);
 605 }
 606 
 607 /*
 608  * Make sure things will work if libshare isn't installed by using
 609  * wrapper functions that check to see that the pointers to functions
 610  * initialized in _zfs_init_libshare() are actually present.
 611  */
 612 
 613 static sa_handle_t (*_sa_init)(int);
 614 static sa_handle_t (*_sa_init_arg)(int, void *);
 615 static int (*_sa_service)(sa_handle_t);
 616 static void (*_sa_fini)(sa_handle_t);
 617 static sa_share_t (*_sa_find_share)(sa_handle_t, char *);
 618 static int (*_sa_enable_share)(sa_share_t, char *);
 619 static int (*_sa_disable_share)(sa_share_t, char *);
 620 static char *(*_sa_errorstr)(int);
 621 static int (*_sa_parse_legacy_options)(sa_group_t, char *, char *);
 622 static boolean_t (*_sa_needs_refresh)(sa_handle_t *);
 623 static libzfs_handle_t *(*_sa_get_zfs_handle)(sa_handle_t);
 624 static int (*_sa_zfs_process_share)(sa_handle_t, sa_group_t, sa_share_t,
 625     char *, char *, zprop_source_t, char *, char *, char *);
 626 static void (*_sa_update_sharetab_ts)(sa_handle_t);
 627 
 628 /*
 629  * _zfs_init_libshare()
 630  *
 631  * Find the libshare.so.1 entry points that we use here and save the
 632  * values to be used later. This is triggered by the runtime loader.
 633  * Make sure the correct ISA version is loaded.
 634  */
 635 
 636 #pragma init(_zfs_init_libshare)
 637 static void
 638 _zfs_init_libshare(void)
 639 {
 640         void *libshare;
 641         char path[MAXPATHLEN];
 642         char isa[MAXISALEN];
 643 
 644 #if defined(_LP64)
 645         if (sysinfo(SI_ARCHITECTURE_64, isa, MAXISALEN) == -1)
 646                 isa[0] = '\0';
 647 #else
 648         isa[0] = '\0';
 649 #endif
 650         (void) snprintf(path, MAXPATHLEN,
 651             "/usr/lib/%s/libshare.so.1", isa);
 652 
 653         if ((libshare = dlopen(path, RTLD_LAZY | RTLD_GLOBAL)) != NULL) {
 654                 _sa_init = (sa_handle_t (*)(int))dlsym(libshare, "sa_init");
 655                 _sa_init_arg = (sa_handle_t (*)(int, void *))dlsym(libshare,
 656                     "sa_init_arg");
 657                 _sa_fini = (void (*)(sa_handle_t))dlsym(libshare, "sa_fini");
 658                 _sa_service = (int (*)(sa_handle_t))dlsym(libshare,
 659                     "sa_service");
 660                 _sa_find_share = (sa_share_t (*)(sa_handle_t, char *))
 661                     dlsym(libshare, "sa_find_share");
 662                 _sa_enable_share = (int (*)(sa_share_t, char *))dlsym(libshare,
 663                     "sa_enable_share");
 664                 _sa_disable_share = (int (*)(sa_share_t, char *))dlsym(libshare,
 665                     "sa_disable_share");
 666                 _sa_errorstr = (char *(*)(int))dlsym(libshare, "sa_errorstr");
 667                 _sa_parse_legacy_options = (int (*)(sa_group_t, char *, char *))
 668                     dlsym(libshare, "sa_parse_legacy_options");
 669                 _sa_needs_refresh = (boolean_t (*)(sa_handle_t *))
 670                     dlsym(libshare, "sa_needs_refresh");
 671                 _sa_get_zfs_handle = (libzfs_handle_t *(*)(sa_handle_t))
 672                     dlsym(libshare, "sa_get_zfs_handle");
 673                 _sa_zfs_process_share = (int (*)(sa_handle_t, sa_group_t,
 674                     sa_share_t, char *, char *, zprop_source_t, char *,
 675                     char *, char *))dlsym(libshare, "sa_zfs_process_share");
 676                 _sa_update_sharetab_ts = (void (*)(sa_handle_t))
 677                     dlsym(libshare, "sa_update_sharetab_ts");
 678                 if (_sa_init == NULL || _sa_init_arg == NULL ||
 679                     _sa_fini == NULL || _sa_find_share == NULL ||
 680                     _sa_enable_share == NULL || _sa_disable_share == NULL ||
 681                     _sa_errorstr == NULL || _sa_parse_legacy_options == NULL ||
 682                     _sa_needs_refresh == NULL || _sa_get_zfs_handle == NULL ||
 683                     _sa_zfs_process_share == NULL || _sa_service == NULL ||
 684                     _sa_update_sharetab_ts == NULL) {
 685                         _sa_init = NULL;
 686                         _sa_init_arg = NULL;
 687                         _sa_service = NULL;
 688                         _sa_fini = NULL;
 689                         _sa_disable_share = NULL;
 690                         _sa_enable_share = NULL;
 691                         _sa_errorstr = NULL;
 692                         _sa_parse_legacy_options = NULL;
 693                         (void) dlclose(libshare);
 694                         _sa_needs_refresh = NULL;
 695                         _sa_get_zfs_handle = NULL;
 696                         _sa_zfs_process_share = NULL;
 697                         _sa_update_sharetab_ts = NULL;
 698                 }
 699         }
 700 }
 701 
 702 /*
 703  * zfs_init_libshare(zhandle, service)
 704  *
 705  * Initialize the libshare API if it hasn't already been initialized.
 706  * In all cases it returns 0 if it succeeded and an error if not. The
 707  * service value is which part(s) of the API to initialize and is a
 708  * direct map to the libshare sa_init(service) interface.
 709  */
 710 static int
 711 zfs_init_libshare_impl(libzfs_handle_t *zhandle, int service, void *arg)
 712 {
 713         /*
 714          * libshare is either not installed or we're in a branded zone. The
 715          * rest of the wrapper functions around the libshare calls already
 716          * handle NULL function pointers, but we don't want the callers of
 717          * zfs_init_libshare() to fail prematurely if libshare is not available.
 718          */
 719         if (_sa_init == NULL)
 720                 return (SA_OK);
 721 
 722         /*
 723          * Attempt to refresh libshare. This is necessary if there was a cache
 724          * miss for a new ZFS dataset that was just created, or if state of the
 725          * sharetab file has changed since libshare was last initialized. We
 726          * want to make sure so check timestamps to see if a different process
 727          * has updated any of the configuration. If there was some non-ZFS
 728          * change, we need to re-initialize the internal cache.
 729          */
 730         if (_sa_needs_refresh != NULL &&
 731             _sa_needs_refresh(zhandle->libzfs_sharehdl)) {
 732                 zfs_uninit_libshare(zhandle);
 733                 zhandle->libzfs_sharehdl = _sa_init_arg(service, arg);
 734         }
 735 
 736         if (zhandle && zhandle->libzfs_sharehdl == NULL)
 737                 zhandle->libzfs_sharehdl = _sa_init_arg(service, arg);
 738 
 739         if (zhandle->libzfs_sharehdl == NULL)
 740                 return (SA_NO_MEMORY);
 741 
 742         return (SA_OK);
 743 }
 744 int
 745 zfs_init_libshare(libzfs_handle_t *zhandle, int service)
 746 {
 747         return (zfs_init_libshare_impl(zhandle, service, NULL));
 748 }
 749 
 750 int
 751 zfs_init_libshare_arg(libzfs_handle_t *zhandle, int service, void *arg)
 752 {
 753         return (zfs_init_libshare_impl(zhandle, service, arg));
 754 }
 755 
 756 
 757 /*
 758  * zfs_uninit_libshare(zhandle)
 759  *
 760  * Uninitialize the libshare API if it hasn't already been
 761  * uninitialized. It is OK to call multiple times.
 762  */
 763 void
 764 zfs_uninit_libshare(libzfs_handle_t *zhandle)
 765 {
 766         if (zhandle != NULL && zhandle->libzfs_sharehdl != NULL) {
 767                 if (_sa_fini != NULL)
 768                         _sa_fini(zhandle->libzfs_sharehdl);
 769                 zhandle->libzfs_sharehdl = NULL;
 770         }
 771 }
 772 
 773 /*
 774  * zfs_parse_options(options, proto)
 775  *
 776  * Call the legacy parse interface to get the protocol specific
 777  * options using the NULL arg to indicate that this is a "parse" only.
 778  */
 779 int
 780 zfs_parse_options(char *options, zfs_share_proto_t proto)
 781 {
 782         if (_sa_parse_legacy_options != NULL) {
 783                 return (_sa_parse_legacy_options(NULL, options,
 784                     proto_table[proto].p_name));
 785         }
 786         return (SA_CONFIG_ERR);
 787 }
 788 
 789 /*
 790  * zfs_sa_find_share(handle, path)
 791  *
 792  * wrapper around sa_find_share to find a share path in the
 793  * configuration.
 794  */
 795 static sa_share_t
 796 zfs_sa_find_share(sa_handle_t handle, char *path)
 797 {
 798         if (_sa_find_share != NULL)
 799                 return (_sa_find_share(handle, path));
 800         return (NULL);
 801 }
 802 
 803 /*
 804  * zfs_sa_enable_share(share, proto)
 805  *
 806  * Wrapper for sa_enable_share which enables a share for a specified
 807  * protocol.
 808  */
 809 static int
 810 zfs_sa_enable_share(sa_share_t share, char *proto)
 811 {
 812         if (_sa_enable_share != NULL)
 813                 return (_sa_enable_share(share, proto));
 814         return (SA_CONFIG_ERR);
 815 }
 816 
 817 /*
 818  * zfs_sa_disable_share(share, proto)
 819  *
 820  * Wrapper for sa_enable_share which disables a share for a specified
 821  * protocol.
 822  */
 823 static int
 824 zfs_sa_disable_share(sa_share_t share, char *proto)
 825 {
 826         if (_sa_disable_share != NULL)
 827                 return (_sa_disable_share(share, proto));
 828         return (SA_CONFIG_ERR);
 829 }
 830 
 831 /*
 832  * Share the given filesystem according to the options in the specified
 833  * protocol specific properties (sharenfs, sharesmb).  We rely
 834  * on "libshare" to the dirty work for us.
 835  */
 836 static int
 837 zfs_share_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto)
 838 {
 839         char mountpoint[ZFS_MAXPROPLEN];
 840         char shareopts[ZFS_MAXPROPLEN];
 841         char sourcestr[ZFS_MAXPROPLEN];
 842         libzfs_handle_t *hdl = zhp->zfs_hdl;
 843         sa_share_t share;
 844         zfs_share_proto_t *curr_proto;
 845         zprop_source_t sourcetype;
 846         int service = SA_INIT_ONE_SHARE_FROM_HANDLE;
 847         int ret;
 848 
 849         if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL))
 850                 return (0);
 851 
 852         /*
 853          * Function may be called in a loop from higher up stack, with libshare
 854          * initialized for multiple shares (SA_INIT_SHARE_API_SELECTIVE).
 855          * zfs_init_libshare_arg will refresh the handle's cache if necessary.
 856          * In this case we do not want to switch to per share initialization.
 857          * Specify SA_INIT_SHARE_API to do full refresh, if refresh required.
 858          */
 859         if ((hdl->libzfs_sharehdl != NULL) && (_sa_service != NULL) &&
 860             (_sa_service(hdl->libzfs_sharehdl) ==
 861             SA_INIT_SHARE_API_SELECTIVE)) {
 862                 service = SA_INIT_SHARE_API;
 863         }
 864 
 865         for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) {
 866                 /*
 867                  * Return success if there are no share options.
 868                  */
 869                 if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop,
 870                     shareopts, sizeof (shareopts), &sourcetype, sourcestr,
 871                     ZFS_MAXPROPLEN, B_FALSE) != 0 ||
 872                     strcmp(shareopts, "off") == 0)
 873                         continue;
 874                 ret = zfs_init_libshare_arg(hdl, service, zhp);
 875                 if (ret != SA_OK) {
 876                         (void) zfs_error_fmt(hdl, EZFS_SHARENFSFAILED,
 877                             dgettext(TEXT_DOMAIN, "cannot share '%s': %s"),
 878                             zfs_get_name(zhp), _sa_errorstr != NULL ?
 879                             _sa_errorstr(ret) : "");
 880                         return (-1);
 881                 }
 882 
 883                 /*
 884                  * If the 'zoned' property is set, then zfs_is_mountable()
 885                  * will have already bailed out if we are in the global zone.
 886                  * But local zones cannot be NFS servers, so we ignore it for
 887                  * local zones as well.
 888                  */
 889                 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED))
 890                         continue;
 891 
 892                 share = zfs_sa_find_share(hdl->libzfs_sharehdl, mountpoint);
 893                 if (share == NULL) {
 894                         /*
 895                          * This may be a new file system that was just
 896                          * created so isn't in the internal cache
 897                          * (second time through). Rather than
 898                          * reloading the entire configuration, we can
 899                          * assume ZFS has done the checking and it is
 900                          * safe to add this to the internal
 901                          * configuration.
 902                          */
 903                         if (_sa_zfs_process_share(hdl->libzfs_sharehdl,
 904                             NULL, NULL, mountpoint,
 905                             proto_table[*curr_proto].p_name, sourcetype,
 906                             shareopts, sourcestr, zhp->zfs_name) != SA_OK) {
 907                                 (void) zfs_error_fmt(hdl,
 908                                     proto_table[*curr_proto].p_share_err,
 909                                     dgettext(TEXT_DOMAIN, "cannot share '%s'"),
 910                                     zfs_get_name(zhp));
 911                                 return (-1);
 912                         }
 913                         share = zfs_sa_find_share(hdl->libzfs_sharehdl,
 914                             mountpoint);
 915                 }
 916                 if (share != NULL) {
 917                         int err;
 918                         err = zfs_sa_enable_share(share,
 919                             proto_table[*curr_proto].p_name);
 920                         if (err != SA_OK) {
 921                                 (void) zfs_error_fmt(hdl,
 922                                     proto_table[*curr_proto].p_share_err,
 923                                     dgettext(TEXT_DOMAIN, "cannot share '%s'"),
 924                                     zfs_get_name(zhp));
 925                                 return (-1);
 926                         }
 927                 } else {
 928                         (void) zfs_error_fmt(hdl,
 929                             proto_table[*curr_proto].p_share_err,
 930                             dgettext(TEXT_DOMAIN, "cannot share '%s'"),
 931                             zfs_get_name(zhp));
 932                         return (-1);
 933                 }
 934 
 935         }
 936         return (0);
 937 }
 938 
 939 
 940 int
 941 zfs_share_nfs(zfs_handle_t *zhp)
 942 {
 943         return (zfs_share_proto(zhp, nfs_only));
 944 }
 945 
 946 int
 947 zfs_share_smb(zfs_handle_t *zhp)
 948 {
 949         return (zfs_share_proto(zhp, smb_only));
 950 }
 951 
 952 int
 953 zfs_shareall(zfs_handle_t *zhp)
 954 {
 955         return (zfs_share_proto(zhp, share_all_proto));
 956 }
 957 
 958 /*
 959  * Unshare a filesystem by mountpoint.
 960  */
 961 static int
 962 unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint,
 963     zfs_share_proto_t proto)
 964 {
 965         sa_share_t share;
 966         int err;
 967         char *mntpt;
 968         int service = SA_INIT_ONE_SHARE_FROM_NAME;
 969 
 970         /*
 971          * Mountpoint could get trashed if libshare calls getmntany
 972          * which it does during API initialization, so strdup the
 973          * value.
 974          */
 975         mntpt = zfs_strdup(hdl, mountpoint);
 976 
 977         /*
 978          * Function may be called in a loop from higher up stack, with libshare
 979          * initialized for multiple shares (SA_INIT_SHARE_API_SELECTIVE).
 980          * zfs_init_libshare_arg will refresh the handle's cache if necessary.
 981          * In this case we do not want to switch to per share initialization.
 982          * Specify SA_INIT_SHARE_API to do full refresh, if refresh required.
 983          */
 984         if ((hdl->libzfs_sharehdl != NULL) && (_sa_service != NULL) &&
 985             (_sa_service(hdl->libzfs_sharehdl) ==
 986             SA_INIT_SHARE_API_SELECTIVE)) {
 987                 service = SA_INIT_SHARE_API;
 988         }
 989 
 990         err = zfs_init_libshare_arg(hdl, service, (void *)name);
 991         if (err != SA_OK) {
 992                 free(mntpt);    /* don't need the copy anymore */
 993                 return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err,
 994                     dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
 995                     name, _sa_errorstr(err)));
 996         }
 997 
 998         share = zfs_sa_find_share(hdl->libzfs_sharehdl, mntpt);
 999         free(mntpt);    /* don't need the copy anymore */
1000 
1001         if (share != NULL) {
1002                 err = zfs_sa_disable_share(share, proto_table[proto].p_name);
1003                 if (err != SA_OK) {
1004                         return (zfs_error_fmt(hdl,
1005                             proto_table[proto].p_unshare_err,
1006                             dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
1007                             name, _sa_errorstr(err)));
1008                 }
1009         } else {
1010                 return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err,
1011                     dgettext(TEXT_DOMAIN, "cannot unshare '%s': not found"),
1012                     name));
1013         }
1014         return (0);
1015 }
1016 
1017 /*
1018  * Unshare the given filesystem.
1019  */
1020 int
1021 zfs_unshare_proto(zfs_handle_t *zhp, const char *mountpoint,
1022     zfs_share_proto_t *proto)
1023 {
1024         libzfs_handle_t *hdl = zhp->zfs_hdl;
1025         struct mnttab entry;
1026         char *mntpt = NULL;
1027 
1028         /* check to see if need to unmount the filesystem */
1029         rewind(zhp->zfs_hdl->libzfs_mnttab);
1030         if (mountpoint != NULL)
1031                 mountpoint = mntpt = zfs_strdup(hdl, mountpoint);
1032 
1033         if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
1034             libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) {
1035                 zfs_share_proto_t *curr_proto;
1036 
1037                 if (mountpoint == NULL)
1038                         mntpt = zfs_strdup(zhp->zfs_hdl, entry.mnt_mountp);
1039 
1040                 for (curr_proto = proto; *curr_proto != PROTO_END;
1041                     curr_proto++) {
1042 
1043                         if (is_shared(hdl, mntpt, *curr_proto) &&
1044                             unshare_one(hdl, zhp->zfs_name,
1045                             mntpt, *curr_proto) != 0) {
1046                                 if (mntpt != NULL)
1047                                         free(mntpt);
1048                                 return (-1);
1049                         }
1050                 }
1051         }
1052         if (mntpt != NULL)
1053                 free(mntpt);
1054 
1055         return (0);
1056 }
1057 
1058 int
1059 zfs_unshare_nfs(zfs_handle_t *zhp, const char *mountpoint)
1060 {
1061         return (zfs_unshare_proto(zhp, mountpoint, nfs_only));
1062 }
1063 
1064 int
1065 zfs_unshare_smb(zfs_handle_t *zhp, const char *mountpoint)
1066 {
1067         return (zfs_unshare_proto(zhp, mountpoint, smb_only));
1068 }
1069 
1070 /*
1071  * Same as zfs_unmountall(), but for NFS and SMB unshares.
1072  */
1073 int
1074 zfs_unshareall_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto)
1075 {
1076         prop_changelist_t *clp;
1077         int ret;
1078 
1079         clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0);
1080         if (clp == NULL)
1081                 return (-1);
1082 
1083         ret = changelist_unshare(clp, proto);
1084         changelist_free(clp);
1085 
1086         return (ret);
1087 }
1088 
1089 int
1090 zfs_unshareall_nfs(zfs_handle_t *zhp)
1091 {
1092         return (zfs_unshareall_proto(zhp, nfs_only));
1093 }
1094 
1095 int
1096 zfs_unshareall_smb(zfs_handle_t *zhp)
1097 {
1098         return (zfs_unshareall_proto(zhp, smb_only));
1099 }
1100 
1101 int
1102 zfs_unshareall(zfs_handle_t *zhp)
1103 {
1104         return (zfs_unshareall_proto(zhp, share_all_proto));
1105 }
1106 
1107 int
1108 zfs_unshareall_bypath(zfs_handle_t *zhp, const char *mountpoint)
1109 {
1110         return (zfs_unshare_proto(zhp, mountpoint, share_all_proto));
1111 }
1112 
1113 /*
1114  * Remove the mountpoint associated with the current dataset, if necessary.
1115  * We only remove the underlying directory if:
1116  *
1117  *      - The mountpoint is not 'none' or 'legacy'
1118  *      - The mountpoint is non-empty
1119  *      - The mountpoint is the default or inherited
1120  *      - The 'zoned' property is set, or we're in a local zone
1121  *
1122  * Any other directories we leave alone.
1123  */
1124 void
1125 remove_mountpoint(zfs_handle_t *zhp)
1126 {
1127         char mountpoint[ZFS_MAXPROPLEN];
1128         zprop_source_t source;
1129 
1130         if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint),
1131             &source))
1132                 return;
1133 
1134         if (source == ZPROP_SRC_DEFAULT ||
1135             source == ZPROP_SRC_INHERITED) {
1136                 /*
1137                  * Try to remove the directory, silently ignoring any errors.
1138                  * The filesystem may have since been removed or moved around,
1139                  * and this error isn't really useful to the administrator in
1140                  * any way.
1141                  */
1142                 (void) rmdir(mountpoint);
1143         }
1144 }
1145 
1146 /*
1147  * Add the given zfs handle to the cb_handles array, dynamically reallocating
1148  * the array if it is out of space.
1149  */
1150 void
1151 libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp)
1152 {
1153         if (cbp->cb_alloc == cbp->cb_used) {
1154                 size_t newsz;
1155                 zfs_handle_t **newhandles;
1156 
1157                 newsz = cbp->cb_alloc != 0 ? cbp->cb_alloc * 2 : 64;
1158                 newhandles = zfs_realloc(zhp->zfs_hdl,
1159                     cbp->cb_handles, cbp->cb_alloc * sizeof (zfs_handle_t *),
1160                     newsz * sizeof (zfs_handle_t *));
1161                 cbp->cb_handles = newhandles;
1162                 cbp->cb_alloc = newsz;
1163         }
1164         cbp->cb_handles[cbp->cb_used++] = zhp;
1165 }
1166 
1167 /*
1168  * Recursive helper function used during file system enumeration
1169  */
1170 static int
1171 zfs_iter_cb(zfs_handle_t *zhp, void *data)
1172 {
1173         get_all_cb_t *cbp = data;
1174 
1175         if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) {
1176                 zfs_close(zhp);
1177                 return (0);
1178         }
1179 
1180         if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) {
1181                 zfs_close(zhp);
1182                 return (0);
1183         }
1184 
1185         if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
1186             ZFS_KEYSTATUS_UNAVAILABLE) {
1187                 zfs_close(zhp);
1188                 return (0);
1189         }
1190 
1191         /*
1192          * If this filesystem is inconsistent and has a receive resume
1193          * token, we can not mount it.
1194          */
1195         if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) &&
1196             zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN,
1197             NULL, 0, NULL, NULL, 0, B_TRUE) == 0) {
1198                 zfs_close(zhp);
1199                 return (0);
1200         }
1201 
1202         libzfs_add_handle(cbp, zhp);
1203         if (zfs_iter_filesystems(zhp, zfs_iter_cb, cbp) != 0) {
1204                 zfs_close(zhp);
1205                 return (-1);
1206         }
1207         return (0);
1208 }
1209 
1210 /*
1211  * Sort comparator that compares two mountpoint paths. We sort these paths so
1212  * that subdirectories immediately follow their parents. This means that we
1213  * effectively treat the '/' character as the lowest value non-nul char.
1214  * Since filesystems from non-global zones can have the same mountpoint
1215  * as other filesystems, the comparator sorts global zone filesystems to
1216  * the top of the list. This means that the global zone will traverse the
1217  * filesystem list in the correct order and can stop when it sees the
1218  * first zoned filesystem. In a non-global zone, only the delegated
1219  * filesystems are seen.
1220  *
1221  * An example sorted list using this comparator would look like:
1222  *
1223  * /foo
1224  * /foo/bar
1225  * /foo/bar/baz
1226  * /foo/baz
1227  * /foo.bar
1228  * /foo (NGZ1)
1229  * /foo (NGZ2)
1230  *
1231  * The mounting code depends on this ordering to deterministically iterate
1232  * over filesystems in order to spawn parallel mount tasks.
1233  */
1234 static int
1235 mountpoint_cmp(const void *arga, const void *argb)
1236 {
1237         zfs_handle_t *const *zap = arga;
1238         zfs_handle_t *za = *zap;
1239         zfs_handle_t *const *zbp = argb;
1240         zfs_handle_t *zb = *zbp;
1241         char mounta[MAXPATHLEN];
1242         char mountb[MAXPATHLEN];
1243         const char *a = mounta;
1244         const char *b = mountb;
1245         boolean_t gota, gotb;
1246         uint64_t zoneda, zonedb;
1247 
1248         zoneda = zfs_prop_get_int(za, ZFS_PROP_ZONED);
1249         zonedb = zfs_prop_get_int(zb, ZFS_PROP_ZONED);
1250         if (zoneda && !zonedb)
1251                 return (1);
1252         if (!zoneda && zonedb)
1253                 return (-1);
1254 
1255         gota = (zfs_get_type(za) == ZFS_TYPE_FILESYSTEM);
1256         if (gota) {
1257                 verify(zfs_prop_get(za, ZFS_PROP_MOUNTPOINT, mounta,
1258                     sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0);
1259         }
1260         gotb = (zfs_get_type(zb) == ZFS_TYPE_FILESYSTEM);
1261         if (gotb) {
1262                 verify(zfs_prop_get(zb, ZFS_PROP_MOUNTPOINT, mountb,
1263                     sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0);
1264         }
1265 
1266         if (gota && gotb) {
1267                 while (*a != '\0' && (*a == *b)) {
1268                         a++;
1269                         b++;
1270                 }
1271                 if (*a == *b)
1272                         return (0);
1273                 if (*a == '\0')
1274                         return (-1);
1275                 if (*b == '\0')
1276                         return (1);
1277                 if (*a == '/')
1278                         return (-1);
1279                 if (*b == '/')
1280                         return (1);
1281                 return (*a < *b ? -1 : *a > *b);
1282         }
1283 
1284         if (gota)
1285                 return (-1);
1286         if (gotb)
1287                 return (1);
1288 
1289         /*
1290          * If neither filesystem has a mountpoint, revert to sorting by
1291          * dataset name.
1292          */
1293         return (strcmp(zfs_get_name(za), zfs_get_name(zb)));
1294 }
1295 
1296 /*
1297  * Return true if path2 is a child of path1.
1298  */
1299 static boolean_t
1300 libzfs_path_contains(const char *path1, const char *path2)
1301 {
1302         return (strstr(path2, path1) == path2 && path2[strlen(path1)] == '/');
1303 }
1304 
1305 /*
1306  * Given a mountpoint specified by idx in the handles array, find the first
1307  * non-descendent of that mountpoint and return its index. Descendant paths
1308  * start with the parent's path. This function relies on the ordering
1309  * enforced by mountpoint_cmp().
1310  */
1311 static int
1312 non_descendant_idx(zfs_handle_t **handles, size_t num_handles, int idx)
1313 {
1314         char parent[ZFS_MAXPROPLEN];
1315         char child[ZFS_MAXPROPLEN];
1316         int i;
1317 
1318         verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, parent,
1319             sizeof (parent), NULL, NULL, 0, B_FALSE) == 0);
1320 
1321         for (i = idx + 1; i < num_handles; i++) {
1322                 verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, child,
1323                     sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
1324                 if (!libzfs_path_contains(parent, child))
1325                         break;
1326         }
1327         return (i);
1328 }
1329 
1330 typedef struct mnt_param {
1331         libzfs_handle_t *mnt_hdl;
1332         zfs_taskq_t     *mnt_tq;
1333         zfs_handle_t    **mnt_zhps; /* filesystems to mount */
1334         size_t          mnt_num_handles;
1335         int             mnt_idx;        /* Index of selected entry to mount */
1336         zfs_iter_f      mnt_func;
1337         void            *mnt_data;
1338 } mnt_param_t;
1339 
1340 /*
1341  * Allocate and populate the parameter struct for mount function, and
1342  * schedule mounting of the entry selected by idx.
1343  */
1344 static void
1345 zfs_dispatch_mount(libzfs_handle_t *hdl, zfs_handle_t **handles,
1346     size_t num_handles, int idx, zfs_iter_f func, void *data, zfs_taskq_t *tq)
1347 {
1348         mnt_param_t *mnt_param = zfs_alloc(hdl, sizeof (mnt_param_t));
1349 
1350         mnt_param->mnt_hdl = hdl;
1351         mnt_param->mnt_tq = tq;
1352         mnt_param->mnt_zhps = handles;
1353         mnt_param->mnt_num_handles = num_handles;
1354         mnt_param->mnt_idx = idx;
1355         mnt_param->mnt_func = func;
1356         mnt_param->mnt_data = data;
1357 
1358         (void) zfs_taskq_dispatch(tq, zfs_mount_task, (void*)mnt_param,
1359             ZFS_TQ_SLEEP);
1360 }
1361 
1362 /*
1363  * This is the structure used to keep state of mounting or sharing operations
1364  * during a call to zpool_enable_datasets().
1365  */
1366 typedef struct mount_state {
1367         /*
1368          * ms_mntstatus is set to -1 if any mount fails. While multiple threads
1369          * could update this variable concurrently, no synchronization is
1370          * needed as it's only ever set to -1.
1371          */
1372         int             ms_mntstatus;
1373         int             ms_mntflags;
1374         const char      *ms_mntopts;
1375 } mount_state_t;
1376 
1377 static int
1378 zfs_mount_one(zfs_handle_t *zhp, void *arg)
1379 {
1380         mount_state_t *ms = arg;
1381         int ret = 0;
1382 
1383         if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
1384             ZFS_KEYSTATUS_UNAVAILABLE)
1385                 return (0);
1386 
1387         if (zfs_mount(zhp, ms->ms_mntopts, ms->ms_mntflags) != 0)
1388                 ret = ms->ms_mntstatus = -1;
1389         return (ret);
1390 }
1391 
1392 static int
1393 zfs_share_one(zfs_handle_t *zhp, void *arg)
1394 {
1395         mount_state_t *ms = arg;
1396         int ret = 0;
1397 
1398         if (zfs_share(zhp) != 0)
1399                 ret = ms->ms_mntstatus = -1;
1400         return (ret);
1401 }
1402 
1403 /*
1404  * Task queue function to mount one file system. On completion, it finds and
1405  * schedules its children to be mounted. This depends on the sorting done in
1406  * zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries
1407  * each descending from the previous) will have no parallelism since we always
1408  * have to wait for the parent to finish mounting before we can schedule
1409  * its children.
1410  */
1411 static void
1412 zfs_mount_task(void *arg)
1413 {
1414         mnt_param_t *mp = arg;
1415         int idx = mp->mnt_idx;
1416         zfs_handle_t **handles = mp->mnt_zhps;
1417         size_t num_handles = mp->mnt_num_handles;
1418         char mountpoint[ZFS_MAXPROPLEN];
1419 
1420         verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, mountpoint,
1421             sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0);
1422 
1423         if (mp->mnt_func(handles[idx], mp->mnt_data) != 0)
1424                 return;
1425 
1426         /*
1427          * We dispatch tasks to mount filesystems with mountpoints underneath
1428          * this one. We do this by dispatching the next filesystem with a
1429          * descendant mountpoint of the one we just mounted, then skip all of
1430          * its descendants, dispatch the next descendant mountpoint, and so on.
1431          * The non_descendant_idx() function skips over filesystems that are
1432          * descendants of the filesystem we just dispatched.
1433          */
1434         for (int i = idx + 1; i < num_handles;
1435             i = non_descendant_idx(handles, num_handles, i)) {
1436                 char child[ZFS_MAXPROPLEN];
1437                 verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT,
1438                     child, sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
1439 
1440                 if (!libzfs_path_contains(mountpoint, child))
1441                         break; /* not a descendant, return */
1442                 zfs_dispatch_mount(mp->mnt_hdl, handles, num_handles, i,
1443                     mp->mnt_func, mp->mnt_data, mp->mnt_tq);
1444         }
1445         free(mp);
1446 }
1447 
1448 /*
1449  * Issue the func callback for each ZFS handle contained in the handles
1450  * array. This function is used to mount all datasets, and so this function
1451  * guarantees that filesystems for parent mountpoints are called before their
1452  * children. As such, before issuing any callbacks, we first sort the array
1453  * of handles by mountpoint.
1454  *
1455  * Callbacks are issued in one of two ways:
1456  *
1457  * 1. Sequentially: If the parallel argument is B_FALSE or the ZFS_SERIAL_MOUNT
1458  *    environment variable is set, then we issue callbacks sequentially.
1459  *
1460  * 2. In parallel: If the parallel argument is B_TRUE and the ZFS_SERIAL_MOUNT
1461  *    environment variable is not set, then we use a taskq to dispatch threads
1462  *    to mount filesystems is parallel. This function dispatches tasks to mount
1463  *    the filesystems at the top-level mountpoints, and these tasks in turn
1464  *    are responsible for recursively mounting filesystems in their children
1465  *    mountpoints.
1466  */
1467 void
1468 zfs_foreach_mountpoint(libzfs_handle_t *hdl, zfs_handle_t **handles,
1469     size_t num_handles, zfs_iter_f func, void *data, boolean_t parallel)
1470 {
1471         zoneid_t zoneid = getzoneid();
1472 
1473         /*
1474          * The ZFS_SERIAL_MOUNT environment variable is an undocumented
1475          * variable that can be used as a convenience to do a/b comparison
1476          * of serial vs. parallel mounting.
1477          */
1478         boolean_t serial_mount = !parallel ||
1479             (getenv("ZFS_SERIAL_MOUNT") != NULL);
1480 
1481         /*
1482          * Sort the datasets by mountpoint. See mountpoint_cmp for details
1483          * of how these are sorted.
1484          */
1485         qsort(handles, num_handles, sizeof (zfs_handle_t *), mountpoint_cmp);
1486 
1487         if (serial_mount) {
1488                 for (int i = 0; i < num_handles; i++) {
1489                         func(handles[i], data);
1490                 }
1491                 return;
1492         }
1493 
1494         /*
1495          * Issue the callback function for each dataset using a parallel
1496          * algorithm that uses a taskq to manage threads.
1497          */
1498         zfs_taskq_t *tq = zfs_taskq_create("mount_taskq", mount_tq_nthr, 0,
1499             mount_tq_nthr, mount_tq_nthr, ZFS_TASKQ_PREPOPULATE);
1500 
1501         /*
1502          * There may be multiple "top level" mountpoints outside of the pool's
1503          * root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of
1504          * these.
1505          */
1506         for (int i = 0; i < num_handles;
1507             i = non_descendant_idx(handles, num_handles, i)) {
1508                 /*
1509                  * Since the mountpoints have been sorted so that the zoned
1510                  * filesystems are at the end, a zoned filesystem seen from
1511                  * the global zone means that we're done.
1512                  */
1513                 if (zoneid == GLOBAL_ZONEID &&
1514                     zfs_prop_get_int(handles[i], ZFS_PROP_ZONED))
1515                         break;
1516                 zfs_dispatch_mount(hdl, handles, num_handles, i, func, data,
1517                     tq);
1518         }
1519 
1520         zfs_taskq_wait(tq); /* wait for all scheduled mounts to complete */
1521         zfs_taskq_destroy(tq);
1522 }
1523 
1524 /*
1525  * Mount and share all datasets within the given pool.  This assumes that no
1526  * datasets within the pool are currently mounted.
1527  */
1528 #pragma weak zpool_mount_datasets = zpool_enable_datasets
1529 int
1530 zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags)
1531 {
1532         get_all_cb_t cb = { 0 };
1533         mount_state_t ms = { 0 };
1534         zfs_handle_t *zfsp;
1535         sa_init_selective_arg_t sharearg;
1536         int ret = 0;
1537 
1538         if ((zfsp = zfs_open(zhp->zpool_hdl, zhp->zpool_name,
1539             ZFS_TYPE_DATASET)) == NULL)
1540                 goto out;
1541 
1542 
1543         /*
1544          * Gather all non-snapshot datasets within the pool. Start by adding
1545          * the root filesystem for this pool to the list, and then iterate
1546          * over all child filesystems.
1547          */
1548         libzfs_add_handle(&cb, zfsp);
1549         if (zfs_iter_filesystems(zfsp, zfs_iter_cb, &cb) != 0)
1550                 goto out;
1551 
1552         ms.ms_mntopts = mntopts;
1553         ms.ms_mntflags = flags;
1554         zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
1555             zfs_mount_one, &ms, B_TRUE);
1556         if (ms.ms_mntstatus != 0)
1557                 ret = ms.ms_mntstatus;
1558 
1559         /*
1560          * Initialize libshare SA_INIT_SHARE_API_SELECTIVE here
1561          * to avoid unnecessary load/unload of the libshare API
1562          * per shared dataset downstream.
1563          */
1564         sharearg.zhandle_arr = cb.cb_handles;
1565         sharearg.zhandle_len = cb.cb_used;
1566         if ((ret = zfs_init_libshare_arg(zhp->zpool_hdl,
1567             SA_INIT_SHARE_API_SELECTIVE, &sharearg)) != 0)
1568                 goto out;
1569 
1570         ms.ms_mntstatus = 0;
1571         zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
1572             zfs_share_one, &ms, B_FALSE);
1573         if (ms.ms_mntstatus != 0)
1574                 ret = ms.ms_mntstatus;
1575 
1576 out:
1577         for (int i = 0; i < cb.cb_used; i++)
1578                 zfs_close(cb.cb_handles[i]);
1579         free(cb.cb_handles);
1580 
1581         return (ret);
1582 }
1583 
1584 static int
1585 mountpoint_compare(const void *a, const void *b)
1586 {
1587         const char *mounta = *((char **)a);
1588         const char *mountb = *((char **)b);
1589 
1590         return (strcmp(mountb, mounta));
1591 }
1592 
1593 /* alias for 2002/240 */
1594 #pragma weak zpool_unmount_datasets = zpool_disable_datasets
1595 /*
1596  * Unshare and unmount all datasets within the given pool.  We don't want to
1597  * rely on traversing the DSL to discover the filesystems within the pool,
1598  * because this may be expensive (if not all of them are mounted), and can fail
1599  * arbitrarily (on I/O error, for example).  Instead, we walk /etc/mnttab and
1600  * gather all the filesystems that are currently mounted.
1601  */
1602 int
1603 zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force)
1604 {
1605         int used, alloc;
1606         struct mnttab entry;
1607         size_t namelen;
1608         char **mountpoints = NULL;
1609         zfs_handle_t **datasets = NULL;
1610         libzfs_handle_t *hdl = zhp->zpool_hdl;
1611         int i;
1612         int ret = -1;
1613         int flags = (force ? MS_FORCE : 0);
1614         sa_init_selective_arg_t sharearg;
1615 
1616         namelen = strlen(zhp->zpool_name);
1617 
1618         rewind(hdl->libzfs_mnttab);
1619         used = alloc = 0;
1620         while (getmntent(hdl->libzfs_mnttab, &entry) == 0) {
1621                 /*
1622                  * Ignore non-ZFS entries.
1623                  */
1624                 if (entry.mnt_fstype == NULL ||
1625                     strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
1626                         continue;
1627 
1628                 /*
1629                  * Ignore filesystems not within this pool.
1630                  */
1631                 if (entry.mnt_mountp == NULL ||
1632                     strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 ||
1633                     (entry.mnt_special[namelen] != '/' &&
1634                     entry.mnt_special[namelen] != '\0'))
1635                         continue;
1636 
1637                 /*
1638                  * At this point we've found a filesystem within our pool.  Add
1639                  * it to our growing list.
1640                  */
1641                 if (used == alloc) {
1642                         if (alloc == 0) {
1643                                 if ((mountpoints = zfs_alloc(hdl,
1644                                     8 * sizeof (void *))) == NULL)
1645                                         goto out;
1646 
1647                                 if ((datasets = zfs_alloc(hdl,
1648                                     8 * sizeof (void *))) == NULL)
1649                                         goto out;
1650 
1651                                 alloc = 8;
1652                         } else {
1653                                 void *ptr;
1654 
1655                                 if ((ptr = zfs_realloc(hdl, mountpoints,
1656                                     alloc * sizeof (void *),
1657                                     alloc * 2 * sizeof (void *))) == NULL)
1658                                         goto out;
1659                                 mountpoints = ptr;
1660 
1661                                 if ((ptr = zfs_realloc(hdl, datasets,
1662                                     alloc * sizeof (void *),
1663                                     alloc * 2 * sizeof (void *))) == NULL)
1664                                         goto out;
1665                                 datasets = ptr;
1666 
1667                                 alloc *= 2;
1668                         }
1669                 }
1670 
1671                 if ((mountpoints[used] = zfs_strdup(hdl,
1672                     entry.mnt_mountp)) == NULL)
1673                         goto out;
1674 
1675                 /*
1676                  * This is allowed to fail, in case there is some I/O error.  It
1677                  * is only used to determine if we need to remove the underlying
1678                  * mountpoint, so failure is not fatal.
1679                  */
1680                 datasets[used] = make_dataset_handle(hdl, entry.mnt_special);
1681 
1682                 used++;
1683         }
1684 
1685         /*
1686          * At this point, we have the entire list of filesystems, so sort it by
1687          * mountpoint.
1688          */
1689         sharearg.zhandle_arr = datasets;
1690         sharearg.zhandle_len = used;
1691         ret = zfs_init_libshare_arg(hdl, SA_INIT_SHARE_API_SELECTIVE,
1692             &sharearg);
1693         if (ret != 0)
1694                 goto out;
1695         qsort(mountpoints, used, sizeof (char *), mountpoint_compare);
1696 
1697         /*
1698          * Walk through and first unshare everything.
1699          */
1700         for (i = 0; i < used; i++) {
1701                 zfs_share_proto_t *curr_proto;
1702                 for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
1703                     curr_proto++) {
1704                         if (is_shared(hdl, mountpoints[i], *curr_proto) &&
1705                             unshare_one(hdl, mountpoints[i],
1706                             mountpoints[i], *curr_proto) != 0)
1707                                 goto out;
1708                 }
1709         }
1710 
1711         /*
1712          * Now unmount everything, removing the underlying directories as
1713          * appropriate.
1714          */
1715         for (i = 0; i < used; i++) {
1716                 if (unmount_one(hdl, mountpoints[i], flags) != 0)
1717                         goto out;
1718         }
1719 
1720         for (i = 0; i < used; i++) {
1721                 if (datasets[i])
1722                         remove_mountpoint(datasets[i]);
1723         }
1724 
1725         ret = 0;
1726 out:
1727         for (i = 0; i < used; i++) {
1728                 if (datasets[i])
1729                         zfs_close(datasets[i]);
1730                 free(mountpoints[i]);
1731         }
1732         free(datasets);
1733         free(mountpoints);
1734 
1735         return (ret);
1736 }